IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i3p347-d91548.html
   My bibliography  Save this article

Economic Performance of Traditional and Modern Rice Varieties under Different Water Management Systems

Author

Listed:
  • Manel Ben Hassen

    (Department of Agricultural and Environmental Sciences, University of Milan, via G. Celoria 2, 20133 Milan, Italy)

  • Federica Monaco

    (Department of Agricultural and Environmental Sciences, University of Milan, via G. Celoria 2, 20133 Milan, Italy)

  • Arianna Facchi

    (Department of Agricultural and Environmental Sciences, University of Milan, via G. Celoria 2, 20133 Milan, Italy)

  • Marco Romani

    (Rice Research Centre, Ente Nazionale Risi, strada per Ceretto 4, 27030 Castello d’Agogna (PV), Italy)

  • Giampiero Valè

    (CREA—Council for Agricultural Research and Economics, Rice Research Unit, S.S. 11 per Torino km 2.5, 13100 Vercelli, Italy
    CREA—Council for Agricultural Research and Economics, Genomics Research Centre, via S. Protaso 302, 29017 Fiorenzuola d’Arda (PC), Italy)

  • Guido Sali

    (Department of Agricultural and Environmental Sciences, University of Milan, via G. Celoria 2, 20133 Milan, Italy)

Abstract

Italian rice production is progressively threatened by water scarcity. Some strategies have been developed to reduce water use. Nevertheless, reducing water irrigation amounts may lower paddy rice production. This publication compares the productivity and the economic performances of traditional and modern rice varieties in northern Italy using two different water management systems. The objective of this analysis is to enhance Italian rice cultivation at the economic, environmental and agronomic levels. Some positive variations of water productivity and economic water productivity were observed for the two varieties when using a lower amount of irrigation water. However, actual production costs and most water supply fees are the same for all the irrigation methods. Furthermore, the study of agronomic traits shows that during the recent years, there were no significant differences or increases of yield among varieties. Consequently, to be adopted by farmers, the irrigation costs coupled with improved rice accessions need to be optimized.

Suggested Citation

  • Manel Ben Hassen & Federica Monaco & Arianna Facchi & Marco Romani & Giampiero Valè & Guido Sali, 2017. "Economic Performance of Traditional and Modern Rice Varieties under Different Water Management Systems," Sustainability, MDPI, vol. 9(3), pages 1-10, February.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:3:p:347-:d:91548
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/3/347/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/3/347/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Darouich, Hanaa & Gonçalves, José M. & Muga, André & Pereira, Luis S., 2012. "Water saving vs. farm economics in cotton surface irrigation: An application of multicriteria analysis," Agricultural Water Management, Elsevier, vol. 115(C), pages 223-231.
    2. Pereira, Luis S. & Cordery, Ian & Iacovides, Iacovos, 2012. "Improved indicators of water use performance and productivity for sustainable water conservation and saving," Agricultural Water Management, Elsevier, vol. 108(C), pages 39-51.
    3. Lorenzo Carrera & Jaroslav Mysiak & Jacopo Crimi, 2013. "Droughts in Northern Italy: Taken by Surprise, Again," Review of Environment, Energy and Economics - Re3, Fondazione Eni Enrico Mattei, June.
    4. Tabbal, D. F. & Bouman, B. A. M. & Bhuiyan, S. I. & Sibayan, E. B. & Sattar, M. A., 2002. "On-farm strategies for reducing water input in irrigated rice; case studies in the Philippines," Agricultural Water Management, Elsevier, vol. 56(2), pages 93-112, July.
    5. Bouman, B. A. M. & Tuong, T. P., 2001. "Field water management to save water and increase its productivity in irrigated lowland rice," Agricultural Water Management, Elsevier, vol. 49(1), pages 11-30, July.
    6. Kijne, J. W. & Barker, R. & Molden. D., 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, Reports H032631, International Water Management Institute.
    7. Tuong, T.P. & Kam, S.P. & Wade, L. & Pandey, S. & Bouman, B.A.M. & Hardy, B., 2000. "Characterizing and Understanding Rainfed Environments," IRRI Books, International Rice Research Institute (IRRI), number 281829.
    8. Tuong, T. P. & Bouman, B. A. M., 2003. "Rice production in water-scarce environments," IWMI Books, Reports H032635, International Water Management Institute.
    9. Pereira, L.S. & Paredes, P. & Sholpankulov, E.D. & Inchenkova, O.P. & Teodoro, P.R. & Horst, M.G., 2009. "Irrigation scheduling strategies for cotton to cope with water scarcity in the Fergana Valley, Central Asia," Agricultural Water Management, Elsevier, vol. 96(5), pages 723-735, May.
    10. Bouman, B.A.M. & Peng, S. & Castaneda, A.R. & Visperas, R.M., 2005. "Yield and water use of irrigated tropical aerobic rice systems," Agricultural Water Management, Elsevier, vol. 74(2), pages 87-105, June.
    11. Kijne, Jacob W. & Barker, Randolph & Molden, David J. (ed.), 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, International Water Management Institute, number 138054.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jayasree Krishnankutty & Michael Blakeney & Rajesh K. Raju & Kadambot H. M. Siddique, 2021. "Sustainability of Traditional Rice Cultivation in Kerala, India—A Socio-Economic Analysis," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    2. Bundhoo, Zumar M.A. & Surroop, Dinesh, 2019. "Evaluation of the potential of bio-methane production from field-based crop residues in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Rebeka Kovačič Lukman & Vasja Omahne & Damjan Krajnc, 2021. "Sustainability Assessment with Integrated Circular Economy Principles: A Toy Case Study," Sustainability, MDPI, vol. 13(7), pages 1-22, March.
    4. Poddar, Ratneswar & Acharjee, P.U. & Bhattacharyya, K. & Patra, S.K., 2022. "Effect of irrigation regime and varietal selection on the yield, water productivity, energy indices and economics of rice production in the lower Gangetic Plains of Eastern India," Agricultural Water Management, Elsevier, vol. 262(C).
    5. Ajuruchukwu Obi & Balogun Taofeek Ayodeji, 2020. "Determinants of Economic Farm-Size–Efficiency Relationship in Smallholder Maize Farms in the Eastern Cape Province of South Africa," Agriculture, MDPI, vol. 10(4), pages 1-18, April.
    6. Silvio Franco & Barbara Pancino & Angelo Martella & Tommaso De Gregorio, 2022. "Assessing the Presence of a Monoculture: From Definition to Quantification," Agriculture, MDPI, vol. 12(9), pages 1-10, September.
    7. Otieno, Gloria Atieno & Reynolds, Travis W. & Karasapan, Altinay & Noriega, Isabel Lopez, 2017. "Implications of Seed Policies for On-Farm Agro-Biodiversity in Ethiopia and Uganda," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 6(4), November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belder, P. & Bouman, B. A.M. & Spiertz, J.H.J., 2007. "Exploring options for water savings in lowland rice using a modelling approach," Agricultural Systems, Elsevier, vol. 92(1-3), pages 91-114, January.
    2. Bouman, B.A.M. & Peng, S. & Castaneda, A.R. & Visperas, R.M., 2005. "Yield and water use of irrigated tropical aerobic rice systems," Agricultural Water Management, Elsevier, vol. 74(2), pages 87-105, June.
    3. Hafeez, Mohsin & Bundschuh, Jochen & Mushtaq, Shahbaz, 2014. "Exploring synergies and tradeoffs: Energy, water, and economic implications of water reuse in rice-based irrigation systems," Applied Energy, Elsevier, vol. 114(C), pages 889-900.
    4. Thakur, Amod K. & Mohanty, Rajeeb K. & Singh, Rajbir & Patil, Dhiraj U., 2015. "Enhancing water and cropping productivity through Integrated System of Rice Intensification (ISRI) with aquaculture and horticulture under rainfed conditions," Agricultural Water Management, Elsevier, vol. 161(C), pages 65-76.
    5. Bouman, B. A.M., 2007. "A conceptual framework for the improvement of crop water productivity at different spatial scales," Agricultural Systems, Elsevier, vol. 93(1-3), pages 43-60, March.
    6. Maraseni, Tek Narayan & Mushtaq, Shahbaz & Hafeez, Mohsin & Maroulis, Jerry, 2010. "Greenhouse gas implications of water reuse in the Upper Pumpanga River Integrated Irrigation System, Philippines," Agricultural Water Management, Elsevier, vol. 97(3), pages 382-388, March.
    7. Carracelas, G. & Hornbuckle, J. & Rosas, J. & Roel, A., 2019. "Irrigation management strategies to increase water productivity in Oryza sativa (rice) in Uruguay," Agricultural Water Management, Elsevier, vol. 222(C), pages 161-172.
    8. Alberto, Ma. Carmelita R. & Wassmann, Reiner & Hirano, Takashi & Miyata, Akira & Hatano, Ryusuke & Kumar, Arvind & Padre, Agnes & Amante, Modesto, 2011. "Comparisons of energy balance and evapotranspiration between flooded and aerobic rice fields in the Philippines," Agricultural Water Management, Elsevier, vol. 98(9), pages 1417-1430, July.
    9. Feng, Liping & Bouman, B. A.M. & Tuong, T.P. & Cabangon, R.J. & Li, Yalong & Lu, Guoan & Feng, Yuehua, 2007. "Exploring options to grow rice using less water in northern China using a modelling approach: I. Field experiments and model evaluation," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 1-13, March.
    10. Poddar, Ratneswar & Acharjee, P.U. & Bhattacharyya, K. & Patra, S.K., 2022. "Effect of irrigation regime and varietal selection on the yield, water productivity, energy indices and economics of rice production in the lower Gangetic Plains of Eastern India," Agricultural Water Management, Elsevier, vol. 262(C).
    11. Mainuddin, Mohammed & Maniruzzaman, Md. & Alam, Md. Mahbubul & Mojid, Mohammad A. & Schmidt, Erik J. & Islam, Md. Towfiqul & Scobie, Michael, 2020. "Water usage and productivity of Boro rice at the field level and their impacts on the sustainable groundwater irrigation in the North-West Bangladesh," Agricultural Water Management, Elsevier, vol. 240(C).
    12. Choudhury, B.U. & Singh, Anil Kumar & Pradhan, S., 2013. "Estimation of crop coefficients of dry-seeded irrigated rice–wheat rotation on raised beds by field water balance method in the Indo-Gangetic plains, India," Agricultural Water Management, Elsevier, vol. 123(C), pages 20-31.
    13. Patel, D.P. & Das, Anup & Munda, G.C. & Ghosh, P.K. & Bordoloi, Juri Sandhya & Kumar, Manoj, 2010. "Evaluation of yield and physiological attributes of high-yielding rice varieties under aerobic and flood-irrigated management practices in mid-hills ecosystem," Agricultural Water Management, Elsevier, vol. 97(9), pages 1269-1276, September.
    14. Bouman, Bas A. M. & Barker, Randolph & Humphreys, E. & Tuong, T. P. & Atlin, G. & Bennett, John & Dawe, D. & Dittert, K. & Dobermann, A. & Facon, Thierry & Fujimoto, N. & Gupta, R. & Haefele, S. & Hos, 2007. "Rice: feeding the billions," Book Chapters,, International Water Management Institute.
      • Bouman, B. & Barker, R. & Humphreys, E. & Tuong, T. P. & Atlin, G. & Bennett, J. & Dawe, D. & Dittert, K. & Dobermann, A. & Facon, T. & Fujimoto, N. & Gupta, R. & Haefele, S. & Hosen, Y. & Ismail, A. , 2007. "Rice: feeding the billions," IWMI Books, Reports H040206, International Water Management Institute.
    15. Li, Sen & Zuo, Qiang & Jin, Xinxin & Ma, Wenwen & Shi, Jianchu & Ben-Gal, Alon, 2018. "The physiological processes and mechanisms for superior water productivity of a popular ground cover rice production system," Agricultural Water Management, Elsevier, vol. 201(C), pages 11-20.
    16. Monaco, Federica & Sali, Guido, 2018. "How water amounts and management options drive Irrigation Water Productivity of rice. A multivariate analysis based on field experiment data," Agricultural Water Management, Elsevier, vol. 195(C), pages 47-57.
    17. Garg, Kaushal K. & Das, Bhabani S. & Safeeq, Mohammad & Bhadoria, Pratap B.S., 2009. "Measurement and modeling of soil water regime in a lowland paddy field showing preferential transport," Agricultural Water Management, Elsevier, vol. 96(12), pages 1705-1714, December.
    18. Bessembinder, J.J.E. & Leffelaar, P.A. & Dhindwal, A.S. & Ponsioen, T.C., 2005. "Which crop and which drop, and the scope for improvement of water productivity," Agricultural Water Management, Elsevier, vol. 73(2), pages 113-130, May.
    19. Ishfaq, Muhammad & Farooq, Muhammad & Zulfiqar, Usman & Hussain, Saddam & Akbar, Nadeem & Nawaz, Ahmad & Anjum, Shakeel Ahmad, 2020. "Alternate wetting and drying: A water-saving and ecofriendly rice production system," Agricultural Water Management, Elsevier, vol. 241(C).
    20. Singh, R. & van Dam, J.C. & Feddes, R.A., 2006. "Water productivity analysis of irrigated crops in Sirsa district, India," Agricultural Water Management, Elsevier, vol. 82(3), pages 253-278, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:3:p:347-:d:91548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.