IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i21p5915-d279959.html
   My bibliography  Save this article

Are Higher Input Levels to Triticale Growing Technologies Effective in Biofuel Production System?

Author

Listed:
  • Stanisław Bielski

    (Department of Agrotechnology, Agricultural Production Management and Agribusiness, Faculty of Environmental Development and Agriculture, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland)

  • Kęstutis Romaneckas

    (Vytautas Magnus University, K. Donelaičio str. 58, 44248 Kaunas, Lithuania)

  • Anastasija Novikova

    (Vytautas Magnus University, K. Donelaičio str. 58, 44248 Kaunas, Lithuania)

  • Egidijus Šarauskis

    (Vytautas Magnus University, K. Donelaičio str. 58, 44248 Kaunas, Lithuania)

Abstract

Energy use in agricultural production has been increasing faster than in many other sectors of the world economy. Owing to high energy consumption during the production of agricultural inputs, with mineral nitrogen fertilizers in particular, it is often questioned as to whether agricultural production is still energy efficient. The objective of this research was to evaluate the energy efficiency of different intensity systems for the production of semi-dwarf winter triticale cultivar ”Twingo”. Cultivar “Twingo” entered the Polish National List in 2012 as one of the best yielding. For this reason, it was used in this experiment to examine its response to basic agrotechnical factors. The field experiment was conducted in the Agricultural Experiment Station in Tomaszkowo in 2013–2015. Low-input, medium-input and high-input production systems were evaluated. The compared systems differed in nitrogen fertilization rates and the level of fungicide protection. The highest output/input ratio was noticed growing winter triticale in low-input production system. The most energy-consuming operation during winter triticale production in the compared systems was mineral fertilization. The high-input production system was significantly lower energy efficiency than the other systems (6.21, medium-input 5.95, low-input 8.19). The energy return on investment (EROI) ratio was low, but above 1, in all the analyzed technologies (low-input 1.30, medium-input 1.14, high-input 1.15). The energy value of the bioethanol produced was higher than the energy inputs into the production of raw material and its processing. The conversion of winter triticale grain to bioethanol proved that the EROI reached the most favorable value for the low-input production system.

Suggested Citation

  • Stanisław Bielski & Kęstutis Romaneckas & Anastasija Novikova & Egidijus Šarauskis, 2019. "Are Higher Input Levels to Triticale Growing Technologies Effective in Biofuel Production System?," Sustainability, MDPI, vol. 11(21), pages 1-15, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:5915-:d:279959
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/21/5915/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/21/5915/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bertrand Hirel & Thierry Tétu & Peter J. Lea & Frédéric Dubois, 2011. "Improving Nitrogen Use Efficiency in Crops for Sustainable Agriculture," Sustainability, MDPI, vol. 3(9), pages 1-34, September.
    2. Hatirli, Selim Adem & Ozkan, Burhan & Fert, Cemal, 2006. "Energy inputs and crop yield relationship in greenhouse tomato production," Renewable Energy, Elsevier, vol. 31(4), pages 427-438.
    3. Dale, Rhys T. & Tyner, Wallace E., 2006. "Economic And Technical Analysis Of Ethanol Dry Milling: Model User'S Manual," Staff Papers 28658, Purdue University, Department of Agricultural Economics.
    4. Gbadebo Oladosu & Siwa Msangi, 2013. "Biofuel-Food Market Interactions: A Review of Modeling Approaches and Findings," Agriculture, MDPI, vol. 3(1), pages 1-19, February.
    5. Hall, Charles A.S. & Lambert, Jessica G. & Balogh, Stephen B., 2014. "EROI of different fuels and the implications for society," Energy Policy, Elsevier, vol. 64(C), pages 141-152.
    6. Kazemi, Hossein & Kamkar, Behnam & Lakzaei, Somayeh & Badsar, Meysam & Shahbyki, Malihe, 2015. "Energy flow analysis for rice production in different geographical regions of Iran," Energy, Elsevier, vol. 84(C), pages 390-396.
    7. Charles A. S. Hall & Stephen Balogh & David J.R. Murphy, 2009. "What is the Minimum EROI that a Sustainable Society Must Have?," Energies, MDPI, vol. 2(1), pages 1-23, January.
    8. Tiziano Gomiero, 2015. "Are Biofuels an Effective and Viable Energy Strategy for Industrialized Societies? A Reasoned Overview of Potentials and Limits," Sustainability, MDPI, vol. 7(7), pages 1-31, June.
    9. Renata Marks-Bielska & Stanisław Bielski & Anastasija Novikova & Kęstutis Romaneckas, 2019. "Straw Stocks as a Source of Renewable Energy. A Case Study of a District in Poland," Sustainability, MDPI, vol. 11(17), pages 1-18, August.
    10. Rhys T. Dale & Wallace E. Tyner, 2006. "Economic And Technical Analysis Of Ethanol Dry Milling: Model Description," Working Papers 06-04, Purdue University, College of Agriculture, Department of Agricultural Economics.
    11. Balat, Mustafa & Balat, Havva, 2009. "Recent trends in global production and utilization of bio-ethanol fuel," Applied Energy, Elsevier, vol. 86(11), pages 2273-2282, November.
    12. Alluvione, Francesco & Moretti, Barbara & Sacco, Dario & Grignani, Carlo, 2011. "EUE (energy use efficiency) of cropping systems for a sustainable agriculture," Energy, Elsevier, vol. 36(7), pages 4468-4481.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stanisław Bielski & Anna Zielińska-Chmielewska & Renata Marks-Bielska, 2021. "Use of Environmental Management Systems and Renewable Energy Sources in Selected Food Processing Enterprises in Poland," Energies, MDPI, vol. 14(11), pages 1-16, May.
    2. Dubis, Bogdan & Jankowski, Krzysztof Józef & Załuski, Dariusz & Sokólski, Mateusz, 2020. "The effect of sewage sludge fertilization on the biomass yield of giant miscanthus and the energy balance of the production process," Energy, Elsevier, vol. 206(C).
    3. Jankowski, Krzysztof J. & Sokólski, Mateusz, 2021. "Spring camelina: Effect of mineral fertilization on the energy efficiency of biomass production," Energy, Elsevier, vol. 220(C).
    4. Aygun E. Guliyeva & Marcin Lis, 2020. "Sustainability Management of Organic Food Organizations: A Case Study of Azerbaijan," Sustainability, MDPI, vol. 12(12), pages 1-20, June.
    5. Dubis, Bogdan & Jankowski, Krzysztof Józef & Sokólski, Mateusz Mikołaj & Załuski, Dariusz & Bórawski, Piotr & Szempliński, Władysław, 2020. "Biomass yield and energy balance of fodder galega in different production technologies: An 11-year field experiment in a large-area farm in Poland," Renewable Energy, Elsevier, vol. 154(C), pages 813-825.
    6. Oleg Bazaluk & Valerii Havrysh & Mykhailo Fedorchuk & Vitalii Nitsenko, 2021. "Energy Assessment of Sorghum Cultivation in Southern Ukraine," Agriculture, MDPI, vol. 11(8), pages 1-22, July.
    7. Krystyna Kurowska & Renata Marks-Bielska & Stanisław Bielski & Hubert Kryszk & Algirdas Jasinskas, 2020. "Food Security in the Context of Liquid Biofuels Production," Energies, MDPI, vol. 13(23), pages 1-16, November.
    8. Jankowski, Krzysztof Józef & Sokólski, Mateusz & Załuski, Dariusz, 2023. "Winter oilseed rape: Agronomic management in different tillage systems and energy balance," Energy, Elsevier, vol. 277(C).
    9. Władysław Szempliński & Bogdan Dubis & Krzysztof Michał Lachutta & Krzysztof Józef Jankowski, 2021. "Energy Optimization in Different Production Technologies of Winter Triticale Grain," Energies, MDPI, vol. 14(4), pages 1-12, February.
    10. Dariusz Antoni Groth & Mateusz Sokólski & Krzysztof Józef Jankowski, 2020. "A Multi-Criteria Evaluation of the Effectiveness of Nitrogen and Sulfur Fertilization in Different Cultivars of Winter Rapeseed—Productivity, Economic and Energy Balance," Energies, MDPI, vol. 13(18), pages 1-38, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coilín ÓhAiseadha & Gerré Quinn & Ronan Connolly & Michael Connolly & Willie Soon, 2020. "Energy and Climate Policy—An Evaluation of Global Climate Change Expenditure 2011–2018," Energies, MDPI, vol. 13(18), pages 1-49, September.
    2. Jonathan Dumas & Antoine Dubois & Paolo Thiran & Pierre Jacques & Francesco Contino & Bertrand Cornélusse & Gauthier Limpens, 2022. "The Energy Return on Investment of Whole-Energy Systems: Application to Belgium," Biophysical Economics and Resource Quality, Springer, vol. 7(4), pages 1-34, December.
    3. Florian Fizaine & Victor Court, 2016. "The energy-economic growth relationship: a new insight from the EROI perspective," Working Papers 1601, Chaire Economie du climat.
    4. Charles Guay-Boutet, 2023. "Estimating the Disaggregated Standard EROI of Canadian Oil Sands Extracted via Open-pit Mining, 1997–2016," Biophysical Economics and Resource Quality, Springer, vol. 8(1), pages 1-21, March.
    5. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    6. Deverell, Rory & McDonnell, Kevin & Ward, Shane & Devlin, Ger, 2009. "An economic assessment of potential ethanol production pathways in Ireland," Energy Policy, Elsevier, vol. 37(10), pages 3993-4002, October.
    7. Zhaoyang Kong & Xiucheng Dong & Bo Xu & Rui Li & Qiang Yin & Cuifang Song, 2015. "EROI Analysis for Direct Coal Liquefaction without and with CCS: The Case of the Shenhua DCL Project in China," Energies, MDPI, vol. 8(2), pages 1-22, January.
    8. Joseph S. Pechsiri & Fredrik Gröndahl, 2022. "Assessing energy return on investment for harvest of wild Nodularia spumigena during blooms in the Baltic Sea," Journal of Industrial Ecology, Yale University, vol. 26(6), pages 1979-1991, December.
    9. Jiří Jaromír Klemeš & Petar Sabev Varbanov & Paweł Ocłoń & Hon Huin Chin, 2019. "Towards Efficient and Clean Process Integration: Utilisation of Renewable Resources and Energy-Saving Technologies," Energies, MDPI, vol. 12(21), pages 1-32, October.
    10. Władysław Szempliński & Bogdan Dubis & Krzysztof Michał Lachutta & Krzysztof Józef Jankowski, 2021. "Energy Optimization in Different Production Technologies of Winter Triticale Grain," Energies, MDPI, vol. 14(4), pages 1-12, February.
    11. Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2018. "Global available wind energy with physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 209(C), pages 322-338.
    12. Lina I. Brand-Correa & Paul E. Brockway & Claire L. Copeland & Timothy J. Foxon & Anne Owen & Peter G. Taylor, 2017. "Developing an Input-Output Based Method to Estimate a National-Level Energy Return on Investment (EROI)," Energies, MDPI, vol. 10(4), pages 1-21, April.
    13. Marc Germain, 2020. "Limits to growth and structural change," Post-Print hal-03129992, HAL.
    14. Pishgar-Komleh, Seyyed Hassan & Keyhani, Alireza & Mostofi-Sarkari, Mohammad Reza & Jafari, Ali, 2012. "Energy and economic analysis of different seed corn harvesting systems in Iran," Energy, Elsevier, vol. 43(1), pages 469-476.
    15. Houshyar, Ehsan & Azadi, Hossein & Almassi, Morteza & Sheikh Davoodi, Mohammad Javad & Witlox, Frank, 2012. "Sustainable and efficient energy consumption of corn production in Southwest Iran: Combination of multi-fuzzy and DEA modeling," Energy, Elsevier, vol. 44(1), pages 672-681.
    16. Jean-François Fagnart & Marc Germain & Benjamin Peeters, 2020. "Can the Energy Transition Be Smooth? A General Equilibrium Approach to the EROEI," Sustainability, MDPI, vol. 12(3), pages 1-29, February.
    17. Marco Vittorio Ecclesia & João Santos & Paul E. Brockway & Tiago Domingos, 2022. "A Comprehensive Societal Energy Return on Investment Study of Portugal Reveals a Low but Stable Value," Energies, MDPI, vol. 15(10), pages 1-22, May.
    18. Hongshuo Yan & Lianyong Feng & Jianliang Wang & Yuanying Chi & Yue Ma, 2021. "A Comprehensive Net Energy Analysis and Outlook of Energy System in China," Biophysical Economics and Resource Quality, Springer, vol. 6(4), pages 1-14, December.
    19. Limpens, Gauthier & Jeanmart, Hervé, 2018. "Electricity storage needs for the energy transition: An EROI based analysis illustrated by the case of Belgium," Energy, Elsevier, vol. 152(C), pages 960-973.
    20. Jackson, Andrew & Jackson, Tim, 2021. "Modelling energy transition risk: The impact of declining energy return on investment (EROI)," Ecological Economics, Elsevier, vol. 185(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:5915-:d:279959. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.