IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6247-d451871.html
   My bibliography  Save this article

Food Security in the Context of Liquid Biofuels Production

Author

Listed:
  • Krystyna Kurowska

    (Department of Spatial Analysis and Real Estate Market, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 15, 10-695 Olsztyn, Poland)

  • Renata Marks-Bielska

    (Department of Economic Policy, Faculty of Economic Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland)

  • Stanisław Bielski

    (Department of Agrotechnology, Faculty of Environmental Development and Agriculture, Agricultural Production Management and Agribusiness, University of Warmia and Mazury in Olsztyn, Oczapowskiego 8, 10-719-Olsztyn, Poland)

  • Hubert Kryszk

    (Department of Spatial Analysis and Real Estate Market, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 15, 10-695 Olsztyn, Poland)

  • Algirdas Jasinskas

    (Institute of Agricultural Engineering and Safety, Agriculture Academy, Vytautas Magnus University, Studentu 15A, Akademija, LT-53362 Kaunas Distr., Lithuania)

Abstract

A crucial factor that determines the development of production and consumption markets for biofuels is the choice of raw materials that can ensure the highest possible production efficiency, the lowest cost and the smallest emission of harmful substances to the atmosphere during all production stages. Considerations underlying the development of biofuel production have been discussed as well as the theoretical mechanisms linking the generation of biofuels to the level of production and the variability of prices of agricultural raw products. The aim of this study has been to identify the scale at which energy raw materials originating from agriculture are used for liquid biofuels production and to explore their impact on food security. The study used public statistical data (OECD-FAO and IndexMundi). The time span of the analysis was from 2005 to 2018. First-generation biofuels based on food raw materials (cereal grains, root crops, sugarcane and vegetable oils) are becoming increasingly competitive with food production recent years have been a period of the dynamic growth in production of liquid biofuels. In 2018, the global production of these substances reached 167.9 billion litres (bioethanol and biodiesel together), consuming 16.1% of maize grain, 1.7% of wheat grain, 3.3% of grain of other feed grains and 13.5% of vegetable oil.

Suggested Citation

  • Krystyna Kurowska & Renata Marks-Bielska & Stanisław Bielski & Hubert Kryszk & Algirdas Jasinskas, 2020. "Food Security in the Context of Liquid Biofuels Production," Energies, MDPI, vol. 13(23), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6247-:d:451871
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6247/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6247/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Silitonga, A.S. & Masjuki, H.H. & Mahlia, T.M.I. & Ong, H.C. & Chong, W.T. & Boosroh, M.H., 2013. "Overview properties of biodiesel diesel blends from edible and non-edible feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 346-360.
    2. McPhail, Lihong Lu & Babcock, Bruce A., 2012. "Impact of US biofuel policy on US corn and gasoline price variability," Energy, Elsevier, vol. 37(1), pages 505-513.
    3. Muresan, Adina Ana & Attia, Shady, 2017. "Energy efficiency in the Romanian residential building stock: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 349-363.
    4. Chovau, Simon & Degrauwe, David & Van der Bruggen, Bart, 2013. "Critical analysis of techno-economic estimates for the production cost of lignocellulosic bio-ethanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 307-321.
    5. Stanisław Bielski & Kęstutis Romaneckas & Anastasija Novikova & Egidijus Šarauskis, 2019. "Are Higher Input Levels to Triticale Growing Technologies Effective in Biofuel Production System?," Sustainability, MDPI, vol. 11(21), pages 1-15, October.
    6. Banković-Ilić, Ivana B. & Stamenković, Olivera S. & Veljković, Vlada B., 2012. "Biodiesel production from non-edible plant oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3621-3647.
    7. Renata Marks-Bielska & Stanisław Bielski & Anastasija Novikova & Kęstutis Romaneckas, 2019. "Straw Stocks as a Source of Renewable Energy. A Case Study of a District in Poland," Sustainability, MDPI, vol. 11(17), pages 1-18, August.
    8. Gui, M.M. & Lee, K.T. & Bhatia, S., 2008. "Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock," Energy, Elsevier, vol. 33(11), pages 1646-1653.
    9. Rastogi, Meenal & Shrivastava, Smriti, 2017. "Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 330-340.
    10. Edward M. Rubin, 2008. "Genomics of cellulosic biofuels," Nature, Nature, vol. 454(7206), pages 841-845, August.
    11. Teresa Serra & David Zilberman & José M. Gil & Barry K. Goodwin, 2011. "Nonlinearities in the U.S. corn‐ethanol‐oil‐gasoline price system," Agricultural Economics, International Association of Agricultural Economists, vol. 42(1), pages 35-45, January.
    12. Gbadebo Oladosu & Siwa Msangi, 2013. "Biofuel-Food Market Interactions: A Review of Modeling Approaches and Findings," Agriculture, MDPI, vol. 3(1), pages 1-19, February.
    13. Anca Mehedintu & Mihaela Sterpu & Georgeta Soava, 2018. "Estimation and Forecasts for the Share of Renewable Energy Consumption in Final Energy Consumption by 2020 in the European Union," Sustainability, MDPI, vol. 10(5), pages 1-22, May.
    14. Kumar, Niraj & Varun, & Chauhan, Sant Ram, 2013. "Performance and emission characteristics of biodiesel from different origins: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 633-658.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Skorupka & Artur Nosalewicz, 2021. "Ammonia Volatilization from Fertilizer Urea—A New Challenge for Agriculture and Industry in View of Growing Global Demand for Food and Energy Crops," Agriculture, MDPI, vol. 11(9), pages 1-15, August.
    2. Savelii Kukharets & Algirdas Jasinskas & Gennadii Golub & Olena Sukmaniuk & Taras Hutsol & Krzysztof Mudryk & Jonas Čėsna & Szymon Glowacki & Iryna Horetska, 2023. "The Experimental Study of the Efficiency of the Gasification Process of the Fast-Growing Willow Biomass in a Downdraft Gasifier," Energies, MDPI, vol. 16(2), pages 1-12, January.
    3. Jose Sabino & Denisson O. Liborio & Santiago Arias & Juan F. Gonzalez & Celmy M. B. M. Barbosa & Florival R. Carvalho & Roger Frety & Ivoneide C. L. Barros & Jose Geraldo A. Pacheco, 2023. "Hydrogen-Free Deoxygenation of Oleic Acid and Industrial Vegetable Oil Waste on CuNiAl Catalysts for Biofuel Production," Energies, MDPI, vol. 16(17), pages 1-20, August.
    4. Marek Szturo & Bogdan Włodarczyk & Ireneusz Miciuła & Karolina Szturo, 2021. "The Essence of Relationships between the Crude Oil Market and Foreign Currencies Market Based on a Study of Key Currencies," Energies, MDPI, vol. 14(23), pages 1-17, November.
    5. Omar Aboelazayem & Mamdouh Gadalla & Basudeb Saha, 2022. "Comprehensive Optimisation of Biodiesel Production Conditions via Supercritical Methanolysis of Waste Cooking Oil," Energies, MDPI, vol. 15(10), pages 1-22, May.
    6. Bórawski, Piotr & Holden, Lisa & Bełdycka-Bórawska, Aneta, 2023. "Perspectives of photovoltaic energy market development in the european union," Energy, Elsevier, vol. 270(C).
    7. Bilgili, Faik & Kocak, Emrah & Kuskaya, Sevda & Bulut, Umit, 2022. "Co-movements and causalities between ethanol production and corn prices in the USA: New evidence from wavelet transform analysis," Energy, Elsevier, vol. 259(C).
    8. Bogdan Włodarczyk & Daniela Firoiu & George H. Ionescu & Florin Ghiocel & Marek Szturo & Lesław Markowski, 2021. "Assessing the Sustainable Development and Renewable Energy Sources Relationship in EU Countries," Energies, MDPI, vol. 14(8), pages 1-16, April.
    9. Stanisław Bielski & Renata Marks-Bielska & Anna Zielińska-Chmielewska & Kęstutis Romaneckas & Egidijus Šarauskis, 2021. "Importance of Agriculture in Creating Energy Security—A Case Study of Poland," Energies, MDPI, vol. 14(9), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    2. Wan Ghazali, Wan Nor Maawa & Mamat, Rizalman & Masjuki, H.H. & Najafi, Gholamhassan, 2015. "Effects of biodiesel from different feedstocks on engine performance and emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 585-602.
    3. Stanisław Bielski & Renata Marks-Bielska & Anna Zielińska-Chmielewska & Kęstutis Romaneckas & Egidijus Šarauskis, 2021. "Importance of Agriculture in Creating Energy Security—A Case Study of Poland," Energies, MDPI, vol. 14(9), pages 1-20, April.
    4. Đurišić-Mladenović, Nataša & Kiss, Ferenc & Škrbić, Biljana & Tomić, Milan & Mićić, Radoslav & Predojević, Zlatica, 2018. "Current state of the biodiesel production and the indigenous feedstock potential in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 280-291.
    5. M. Mofijur & F. Kusumo & I. M. Rizwanul Fattah & H. M. Mahmudul & M. G. Rasul & A. H. Shamsuddin & T. M. I. Mahlia, 2020. "Resource Recovery from Waste Coffee Grounds Using Ultrasonic-Assisted Technology for Bioenergy Production," Energies, MDPI, vol. 13(7), pages 1-15, April.
    6. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    7. Jiang, Jingze & Marsh, Thomas L. & Tozer, Peter R., 2015. "Policy induced price volatility transmission: Linking the U.S. crude oil, corn and plastics markets," Energy Economics, Elsevier, vol. 52(PA), pages 217-227.
    8. Rozina, & Asif, Saira & Ahmad, Mushtaq & Zafar, Muhammad & Ali, Nsir, 2017. "Prospects and potential of fatty acid methyl esters of some non-edible seed oils for use as biodiesel in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 687-702.
    9. Al-Maadid, Alanoud & Caporale, Guglielmo Maria & Spagnolo, Fabio & Spagnolo, Nicola, 2017. "Spillovers between food and energy prices and structural breaks," International Economics, Elsevier, vol. 150(C), pages 1-18.
    10. Tayari, Sara & Abedi, Reza & Rahi, Abbas, 2020. "Comparative assessment of engine performance and emissions fueled with three different biodiesel generations," Renewable Energy, Elsevier, vol. 147(P1), pages 1058-1069.
    11. Tiwari, Aviral Kumar & Nasreen, Samia & Shahbaz, Muhammad & Hammoudeh, Shawkat, 2020. "Time-frequency causality and connectedness between international prices of energy, food, industry, agriculture and metals," Energy Economics, Elsevier, vol. 85(C).
    12. Stanisław Bielski & Kęstutis Romaneckas & Anastasija Novikova & Egidijus Šarauskis, 2019. "Are Higher Input Levels to Triticale Growing Technologies Effective in Biofuel Production System?," Sustainability, MDPI, vol. 11(21), pages 1-15, October.
    13. Mesa, Leyanis & Martínez, Yenisleidy & Celia de Armas, Ana & González, Erenio, 2020. "Ethanol production from sugarcane straw using different configurations of fermentation and techno-economical evaluation of the best schemes," Renewable Energy, Elsevier, vol. 156(C), pages 377-388.
    14. Monirul Islam Miskat & Ashfaq Ahmed & Hemal Chowdhury & Tamal Chowdhury & Piyal Chowdhury & Sadiq M. Sait & Young-Kwon Park, 2020. "Assessing the Theoretical Prospects of Bioethanol Production as a Biofuel from Agricultural Residues in Bangladesh: A Review," Sustainability, MDPI, vol. 12(20), pages 1-18, October.
    15. Miguel-Angel Perea-Moreno & Esther Samerón-Manzano & Alberto-Jesus Perea-Moreno, 2019. "Biomass as Renewable Energy: Worldwide Research Trends," Sustainability, MDPI, vol. 11(3), pages 1-19, February.
    16. Carrillo-Nieves, Danay & Rostro Alanís, Magdalena J. & de la Cruz Quiroz, Reynaldo & Ruiz, Héctor A. & Iqbal, Hafiz M.N. & Parra-Saldívar, Roberto, 2019. "Current status and future trends of bioethanol production from agro-industrial wastes in Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 63-74.
    17. Yang, Liuqing & Takase, Mohammed & Zhang, Min & Zhao, Ting & Wu, Xiangyang, 2014. "Potential non-edible oil feedstock for biodiesel production in Africa: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 461-477.
    18. Dias, J.M. & Araújo, J.M. & Costa, J.F. & Alvim-Ferraz, M.C.M. & Almeida, M.F., 2013. "Biodiesel production from raw castor oil," Energy, Elsevier, vol. 53(C), pages 58-66.
    19. Takase, Mohammed & Zhao, Ting & Zhang, Min & Chen, Yao & Liu, Hongyang & Yang, Liuqing & Wu, Xiangyang, 2015. "An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 495-520.
    20. Román-Figueroa, Celián & Olivares-Carrillo, Pilar & Paneque, Manuel & Palacios-Nereo, Francisco Javier & Quesada-Medina, Joaquín, 2016. "High-yield production of biodiesel by non-catalytic supercritical methanol transesterification of crude castor oil (Ricinus communis)," Energy, Elsevier, vol. 107(C), pages 165-171.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6247-:d:451871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.