IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i3p1176-d317383.html
   My bibliography  Save this article

Can the Energy Transition Be Smooth? A General Equilibrium Approach to the EROEI

Author

Listed:
  • Jean-François Fagnart

    (CEREC, Université Saint-Louis, 1000 Bruxelles, Belgium
    IRES, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium)

  • Marc Germain

    (IRES, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
    LEM-CNRS (UMR9221), Université de Lille, 59655 Villeneuve D’Ascq, France)

  • Benjamin Peeters

    (CEREC, Université Saint-Louis, 1000 Bruxelles, Belgium
    Fonds de la Recherche Scientifique (FNRS), 1000 Bruxelles, Belgium)

Abstract

The concept of energy return (EROEI ratio) is widely used in energy science to describe the interactions between energy and the economic system but it is largely ignored in macroeconomics. In order to contribute to bridging a gap between these fields of research, we incorporate these metrics into an endogenous growth model with two sectors (energy and final goods) and use this model to analyze the macroeconomic implications of a transition to lower EROEI resources. An approach in terms of net energy allows us (1) to explicitly link the EROEI to macroeconomic variables, (2) to show how it is related to the growth rate of GDP and (3) to obtain a closed-form solution for its long-run value at a general equilibrium level. There is furthermore a tight and decreasing long-run relationship between the EROEI value and the share of investment that must be allocated to the energy sector. Hence, a transition to lower EROEI resources intensifies the rival use of capital in the energy and non-energy sectors and leads to major economic changes, both in the inter-sectoral capital allocation and in the allocation of final output between consumption and investment. We show that a protracted economic contraction may occur before the completion of the transition to renewable energy. We analyze how (1) the magnitude of this contraction and (2) the possibility of an ulterior recovery depend on the initial stock of non-renewables, the potentials of technical progress in the energy and non-energy sectors and the substitutability between capital and energy.

Suggested Citation

  • Jean-François Fagnart & Marc Germain & Benjamin Peeters, 2020. "Can the Energy Transition Be Smooth? A General Equilibrium Approach to the EROEI," Sustainability, MDPI, vol. 12(3), pages 1-29, February.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:1176-:d:317383
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/3/1176/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/3/1176/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fagnart, Jean-François & Germain, Marc, 2011. "Quantitative versus qualitative growth with recyclable resource," Ecological Economics, Elsevier, vol. 70(5), pages 929-941, March.
    2. repec:adr:anecst:y:2011:i:103-104:p:07 is not listed on IDEAS
    3. van der Meijden, Gerard & Smulders, Sjak, 2018. "Technological Change During The Energy Transition," Macroeconomic Dynamics, Cambridge University Press, vol. 22(4), pages 805-836, June.
    4. Valero, Alicia & Valero, Antonio & Martínez, Amaya, 2010. "Inventory of the exergy resources on earth including its mineral capital," Energy, Elsevier, vol. 35(2), pages 989-995.
    5. Victor Court & Pierre-André Jouvet & Frédéric Lantz, 2018. "Long-term endogenous economic growth and energy transitions," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    6. Bonneuil, N. & Boucekkine, R., 2016. "Optimal transition to renewable energy with threshold of irreversible pollution," European Journal of Operational Research, Elsevier, vol. 248(1), pages 257-262.
    7. Ajay K. Gupta & Charles A.S. Hall, 2011. "A Review of the Past and Current State of EROI Data," Sustainability, MDPI, vol. 3(10), pages 1-14, October.
    8. Michel, Philippe & Thibault, Emmanuel & Vidal, Jean-Pierre, 2006. "Intergenerational altruism and neoclassical growth models," Handbook on the Economics of Giving, Reciprocity and Altruism, in: S. Kolm & Jean Mercier Ythier (ed.), Handbook of the Economics of Giving, Altruism and Reciprocity, edition 1, volume 1, chapter 15, pages 1055-1106, Elsevier.
    9. Jean-Pierre Amigues & Michel Moreaux & Katheline Schubert, 2011. "Optimal Use of a Polluting Non-Renewable Resource Generating both Manageable and Catastrophic Damages," Annals of Economics and Statistics, GENES, issue 103-104, pages 107-141.
    10. Thomas Piketty, 2013. "Le capital au XXIe siècle," PSE-Ecole d'économie de Paris (Postprint) halshs-00979232, HAL.
    11. Growiec, Jakub & Schumacher, Ingmar, 2008. "On technical change in the elasticities of resource inputs," Resources Policy, Elsevier, vol. 33(4), pages 210-221, December.
    12. Carey W. King & Charles A.S. Hall, 2011. "Relating Financial and Energy Return on Investment," Sustainability, MDPI, vol. 3(10), pages 1-23, October.
    13. Kemfert, Claudia, 1998. "Estimated substitution elasticities of a nested CES production function approach for Germany," Energy Economics, Elsevier, vol. 20(3), pages 249-264, June.
    14. Capellán-Pérez, Iñigo & Mediavilla, Margarita & de Castro, Carlos & Carpintero, Óscar & Miguel, Luis Javier, 2014. "Fossil fuel depletion and socio-economic scenarios: An integrated approach," Energy, Elsevier, vol. 77(C), pages 641-666.
    15. Hall, Charles A.S. & Lambert, Jessica G. & Balogh, Stephen B., 2014. "EROI of different fuels and the implications for society," Energy Policy, Elsevier, vol. 64(C), pages 141-152.
    16. Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2018. "Global available wind energy with physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 209(C), pages 322-338.
    17. Ponta, Linda & Raberto, Marco & Teglio, Andrea & Cincotti, Silvano, 2018. "An Agent-based Stock-flow Consistent Model of the Sustainable Transition in the Energy Sector," Ecological Economics, Elsevier, vol. 145(C), pages 274-300.
    18. Heun, Matthew Kuperus & de Wit, Martin, 2012. "Energy return on (energy) invested (EROI), oil prices, and energy transitions," Energy Policy, Elsevier, vol. 40(C), pages 147-158.
    19. Jean-François Fagnart & Marc Germain, 2016. "Net energy ratio, EROEI and the macroeconomy," Post-Print hal-02987074, HAL.
    20. Charles A. S. Hall & Stephen Balogh & David J.R. Murphy, 2009. "What is the Minimum EROI that a Sustainable Society Must Have?," Energies, MDPI, vol. 2(1), pages 1-23, January.
    21. Moriarty, Patrick & Honnery, Damon, 2016. "Can renewable energy power the future?," Energy Policy, Elsevier, vol. 93(C), pages 3-7.
    22. Brandt, Adam R. & Dale, Michael & Barnhart, Charles J., 2013. "Calculating systems-scale energy efficiency and net energy returns: A bottom-up matrix-based approach," Energy, Elsevier, vol. 62(C), pages 235-247.
    23. Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2020. "Global available solar energy under physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 257(C).
    24. Meran, Georg, 2019. "Thermodynamic constraints and the use of energy-dependent CES-production functions A cautionary comment," Energy Economics, Elsevier, vol. 81(C), pages 63-69.
    25. Jouvet, Pierre-André & Schumacher, Ingmar, 2012. "Learning-by-doing and the costs of a backstop for energy transition and sustainability," Ecological Economics, Elsevier, vol. 73(C), pages 122-132.
    26. van der Werf, Edwin, 2008. "Production functions for climate policy modeling: An empirical analysis," Energy Economics, Elsevier, vol. 30(6), pages 2964-2979, November.
    27. Fagnart, Jean-François & Germain, Marc, 2016. "Net energy ratio, EROEI and the macroeconomy," Structural Change and Economic Dynamics, Elsevier, vol. 37(C), pages 121-126.
    28. Victor Court & Pierre-André Jouvet & Frédéric Lantz, 2018. "Long-term endogenous economic growth and energy transitions," Post-Print hal-01549796, HAL.
    29. Marc Germain, 2012. "Equilibres et effondrement dans le cadre d'un cycle naturel," Brussels Economic Review, ULB -- Universite Libre de Bruxelles, vol. 55(4), pages 427-455.
    30. Anderson, Curt L., 1987. "The production process: Inputs and wastes," Journal of Environmental Economics and Management, Elsevier, vol. 14(1), pages 1-12, March.
    31. Krysiak, Frank C., 2006. "Entropy, limits to growth, and the prospects for weak sustainability," Ecological Economics, Elsevier, vol. 58(1), pages 182-191, June.
    32. Tahvonen, Olli & Salo, Seppo, 2001. "Economic growth and transitions between renewable and nonrenewable energy resources," European Economic Review, Elsevier, vol. 45(8), pages 1379-1398, August.
    33. Dale, M. & Krumdieck, S. & Bodger, P., 2012. "Global energy modelling — A biophysical approach (GEMBA) part 1: An overview of biophysical economics," Ecological Economics, Elsevier, vol. 73(C), pages 152-157.
    34. Lukáš Režný & Vladimír Bureš, 2019. "Energy Transition Scenarios and Their Economic Impacts in the Extended Neoclassical Model of Economic Growth," Sustainability, MDPI, vol. 11(13), pages 1-25, July.
    35. Adam R. Brandt & Michael Dale, 2011. "A General Mathematical Framework for Calculating Systems-Scale Efficiency of Energy Extraction and Conversion: Energy Return on Investment (EROI) and Other Energy Return Ratios," Energies, MDPI, vol. 4(8), pages 1-35, August.
    36. Marc Germain, 2012. "Equilibres et effondrement dans le cadre d'un cycle naturel," Working Papers hal-00989886, HAL.
    37. Rye, Craig D. & Jackson, Tim, 2018. "A review of EROEI-dynamics energy-transition models," Energy Policy, Elsevier, vol. 122(C), pages 260-272.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roberto Leonardo Rana & Mariarosaria Lombardi & Pasquale Giungato & Caterina Tricase, 2020. "Trends in Scientific Literature on Energy Return Ratio of Renewable Energy Sources for Supporting Policymakers," Administrative Sciences, MDPI, vol. 10(2), pages 1-17, March.
    2. Elise Dupont & Marc Germain & Hervé Jeanmart, 2021. "Feasibility and Economic Impacts of the Energy Transition," Sustainability, MDPI, vol. 13(10), pages 1-34, May.
    3. Marc Germain, 2021. "Limites à la croissance et destruction créatrice dans le cadre d'un modèle à générations de capital," Working Papers 2021.14, FAERE - French Association of Environmental and Resource Economists.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Germain, Marc, 2020. "Limits to growth and structural change," Structural Change and Economic Dynamics, Elsevier, vol. 55(C), pages 204-221.
    2. Marc Germain, 2020. "Limits to growth and structural change," Post-Print hal-03129992, HAL.
    3. Elise Dupont & Marc Germain & Hervé Jeanmart, 2021. "Feasibility and Economic Impacts of the Energy Transition," Sustainability, MDPI, vol. 13(10), pages 1-34, May.
    4. Florian Fizaine & Victor Court, 2016. "The energy-economic growth relationship: a new insight from the EROI perspective," Working Papers 1601, Chaire Economie du climat.
    5. Jean-François Fagnart & Marc Germain, 2015. "Can the Energy Transition Be Smooth?," Working Papers 2015.04, FAERE - French Association of Environmental and Resource Economists.
    6. Carlos de Castro & Iñigo Capellán-Pérez, 2020. "Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies," Energies, MDPI, vol. 13(12), pages 1-43, June.
    7. Delannoy, Louis & Longaretti, Pierre-Yves & Murphy, David J. & Prados, Emmanuel, 2021. "Peak oil and the low-carbon energy transition: A net-energy perspective," Applied Energy, Elsevier, vol. 304(C).
    8. Jacques, Pierre & Delannoy, Louis & Andrieu, Baptiste & Yilmaz, Devrim & Jeanmart, Hervé & Godin, Antoine, 2023. "Assessing the economic consequences of an energy transition through a biophysical stock-flow consistent model," Ecological Economics, Elsevier, vol. 209(C).
    9. Jackson, Andrew & Jackson, Tim, 2021. "Modelling energy transition risk: The impact of declining energy return on investment (EROI)," Ecological Economics, Elsevier, vol. 185(C).
    10. Court, Victor & Fizaine, Florian, 2017. "Long-Term Estimates of the Energy-Return-on-Investment (EROI) of Coal, Oil, and Gas Global Productions," Ecological Economics, Elsevier, vol. 138(C), pages 145-159.
    11. Roberto Leonardo Rana & Mariarosaria Lombardi & Pasquale Giungato & Caterina Tricase, 2020. "Trends in Scientific Literature on Energy Return Ratio of Renewable Energy Sources for Supporting Policymakers," Administrative Sciences, MDPI, vol. 10(2), pages 1-17, March.
    12. Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2018. "Global available wind energy with physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 209(C), pages 322-338.
    13. Richard Heinberg & Timothy Crownshaw, 2018. "Energy Decline and Authoritarianism," Biophysical Economics and Resource Quality, Springer, vol. 3(3), pages 1-11, September.
    14. Lina I. Brand-Correa & Paul E. Brockway & Claire L. Copeland & Timothy J. Foxon & Anne Owen & Peter G. Taylor, 2017. "Developing an Input-Output Based Method to Estimate a National-Level Energy Return on Investment (EROI)," Energies, MDPI, vol. 10(4), pages 1-21, April.
    15. Elise Dupont & Marc Germain & Hervé Jeanmart, 2021. "Estimate of the Societal Energy Return on Investment (EROI)," Biophysical Economics and Resource Quality, Springer, vol. 6(1), pages 1-14, March.
    16. Palmer, Graham, 2017. "An input-output based net-energy assessment of an electricity supply industry," Energy, Elsevier, vol. 141(C), pages 1504-1516.
    17. Rye, Craig D. & Jackson, Tim, 2018. "A review of EROEI-dynamics energy-transition models," Energy Policy, Elsevier, vol. 122(C), pages 260-272.
    18. Fizaine, Florian & Court, Victor, 2015. "Renewable electricity producing technologies and metal depletion: A sensitivity analysis using the EROI," Ecological Economics, Elsevier, vol. 110(C), pages 106-118.
    19. Adam R. Brandt, 2017. "How Does Energy Resource Depletion Affect Prosperity? Mathematics of a Minimum Energy Return on Investment (EROI)," Biophysical Economics and Resource Quality, Springer, vol. 2(1), pages 1-12, March.
    20. Buus, Tomáš, 2017. "Energy efficiency and energy prices: A general mathematical framework," Energy, Elsevier, vol. 139(C), pages 743-754.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:1176-:d:317383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.