IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i11p429-d439588.html
   My bibliography  Save this article

Climatic Impact Toward Regional Water Allocation and Transfer Strategies from Economic, Social and Environmental Perspectives

Author

Listed:
  • Zhongwen Xu

    (Business School, Sichuan University, Chengdu 610064, China)

  • Liming Yao

    (Business School, Sichuan University, Chengdu 610064, China)

  • Yin Long

    (Institute for Future Initiatives, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan)

Abstract

Aiming to store water in wet seasons and outflow water in dry seasons, and improve reservoirs’ performance, are of great importance. Given the developmental disparities across regions and uneven precipitation within one year, water transfer could be an efficient solution. Here, we formulated a three-stage decision-making framework to simulate possible hydrological, meteorological, economic, and demographic parameters in future scenarios and proposed a market-based dynamic multi-objective optimization model, which optimized the adjusted water allocation and water transfers strategies among regions. A case study was conducted in the Yiluo river basin to evaluate the optimal proportion of local water use and water transfers to verify the application and its effects. Results indicated that water use stress and environmental stress could be relieved from four simulated future scenarios, which further accelerated region- and basin-scale sustainability. The results also gave valuable insights into optimal water use options and transferred to maximize the economic, social, and environmental benefits and climate mitigation.

Suggested Citation

  • Zhongwen Xu & Liming Yao & Yin Long, 2020. "Climatic Impact Toward Regional Water Allocation and Transfer Strategies from Economic, Social and Environmental Perspectives," Land, MDPI, vol. 9(11), pages 1-17, November.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:11:p:429-:d:439588
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/11/429/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/11/429/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Lizhong & Fang, Liping & Hipel, Keith W., 2008. "Basin-wide cooperative water resources allocation," European Journal of Operational Research, Elsevier, vol. 190(3), pages 798-817, November.
    2. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    3. Xiao-jun Wang & Jian-yun Zhang & Shamsuddin Shahid & En-hong Guan & Yong-xiang Wu & Juan Gao & Rui-min He, 2016. "Adaptation to climate change impacts on water demand," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(1), pages 81-99, January.
    4. Rosegrant, Mark W. & Binswanger, Hans P., 1994. "Markets in tradable water rights: Potential for efficiency gains in developing country water resource allocation," World Development, Elsevier, vol. 22(11), pages 1613-1625, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erik Ansink & Harold Houba, 2014. "The Economics of Transboundary River Management," Tinbergen Institute Discussion Papers 14-132/VIII, Tinbergen Institute.
    2. Hu, Zhineng & Chen, Yazhen & Yao, Liming & Wei, Changting & Li, Chaozhi, 2016. "Optimal allocation of regional water resources: From a perspective of equity–efficiency tradeoff," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 102-113.
    3. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    4. Voisin, Nathalie & Dyreson, Ana & Fu, Tao & O'Connell, Matt & Turner, Sean W.D. & Zhou, Tian & Macknick, Jordan, 2020. "Impact of climate change on water availability and its propagation through the Western U.S. power grid," Applied Energy, Elsevier, vol. 276(C).
    5. Cristina Cattaneo & Emanuele Massetti, 2019. "Does Harmful Climate Increase Or Decrease Migration? Evidence From Rural Households In Nigeria," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 1-36, November.
    6. Pascalle Smith & Georg Heinrich & Martin Suklitsch & Andreas Gobiet & Markus Stoffel & Jürg Fuhrer, 2014. "Station-scale bias correction and uncertainty analysis for the estimation of irrigation water requirements in the Swiss Rhone catchment under climate change," Climatic Change, Springer, vol. 127(3), pages 521-534, December.
    7. T.M.L. Wigley, 2018. "The Paris warming targets: emissions requirements and sea level consequences," Climatic Change, Springer, vol. 147(1), pages 31-45, March.
    8. Thomas Vendryes, 2014. "Peasants Against Private Property Rights: A Review Of The Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 971-995, December.
    9. Karsu, Özlem & Morton, Alec, 2015. "Inequity averse optimization in operational research," European Journal of Operational Research, Elsevier, vol. 245(2), pages 343-359.
    10. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    11. Wang, S. & Huang, G.H., 2014. "An integrated approach for water resources decision making under interactive and compound uncertainties," Omega, Elsevier, vol. 44(C), pages 32-40.
    12. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    13. Jaewon Kwak & Huiseong Noh & Soojun Kim & Vijay P. Singh & Seung Jin Hong & Duckgil Kim & Keonhaeng Lee & Narae Kang & Hung Soo Kim, 2014. "Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea," IJERPH, MDPI, vol. 11(10), pages 1-19, October.
    14. Amirova, Iroda & Petrick, Martin & Djanibekov, Nodir, 2022. "Community, state and market: Understanding historical water governance evolution in Central Asia," IAMO Discussion Papers 327298, Institute of Agricultural Development in Transition Economies (IAMO).
    15. Hwang, In Chang, 2013. "Stochastic Kaya model and its applications," MPRA Paper 55099, University Library of Munich, Germany.
    16. Robyn Horan & Pawan S. Wable & Veena Srinivasan & Helen E. Baron & Virginie J. D. Keller & Kaushal K. Garg & Nathan Rickards & Mike Simpson & Helen A. Houghton-Carr & H. Gwyn Rees, 2021. "Modelling Small-Scale Storage Interventions in Semi-Arid India at the Basin Scale," Sustainability, MDPI, vol. 13(11), pages 1-28, May.
    17. Richard Hornbeck & Pinar Keskin, 2015. "Does Agriculture Generate Local Economic Spillovers? Short-Run and Long-Run Evidence from the Ogallala Aquifer," American Economic Journal: Economic Policy, American Economic Association, vol. 7(2), pages 192-213, May.
    18. Reto Foellmi & Urs Meister, 2012. "Enhancing the Efficiency of Water Supply—Product Market Competition Versus Trade," Journal of Industry, Competition and Trade, Springer, vol. 12(3), pages 299-324, September.
    19. Roberto Roson & Richard Damania, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity: an Assessment of Alternative Scenarios," IEFE Working Papers 84, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    20. Le Bars, Dewi, 2018. "Uncertainty in sea level rise projections due to the dependence between contributors," Earth Arxiv uvw3s, Center for Open Science.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:11:p:429-:d:439588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.