IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v190y2008i3p798-817.html
   My bibliography  Save this article

Basin-wide cooperative water resources allocation

Author

Listed:
  • Wang, Lizhong
  • Fang, Liping
  • Hipel, Keith W.

Abstract

The Cooperative Water Allocation Model (CWAM) is designed within a general mathematical programming framework for modeling equitable and efficient water allocation among competing users at the basin level and applied to a large-scale water allocation problem in the South Saskatchewan River Basin located in southern Alberta, Canada. This comprehensive model consists of two main steps: initial water rights allocation and subsequent water and net benefits reallocation. Two mathematical programming approaches, called the priority-based maximal multiperiod network flow (PMMNF) method and the lexicographic minimax water shortage ratios (LMWSR) technique, are developed for use in the first step. Cooperative game theoretic approaches are utilized to investigate how the net benefits can be fairly reallocated to achieve optimal economic reallocation of water resources in the second step. The application of this methodology to the South Saskatchewan River Basin shows that CWAM can be utilized as a tool for promoting the understanding and cooperation of water users to achieve maximum welfare in a river basin and minimize the potential damage caused by water shortages, through water rights allocation, and water and net benefit transfers among water users under a regulated water market or administrative allocation mechanism.

Suggested Citation

  • Wang, Lizhong & Fang, Liping & Hipel, Keith W., 2008. "Basin-wide cooperative water resources allocation," European Journal of Operational Research, Elsevier, vol. 190(3), pages 798-817, November.
  • Handle: RePEc:eee:ejores:v:190:y:2008:i:3:p:798-817
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00642-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahan, Robert C. & Horbulyk, Theodore M. & Rowse, John G., 2002. "Market mechanisms and the efficient allocation of surface water resources in southern Alberta," Socio-Economic Planning Sciences, Elsevier, vol. 36(1), pages 25-49, March.
    2. Hanan Luss, 1999. "On Equitable Resource Allocation Problems: A Lexicographic Minimax Approach," Operations Research, INFORMS, vol. 47(3), pages 361-378, June.
    3. McKinney, D. C. & Cai, X. & Rosegrant, M. W. & Ringler, C. & Scott, C. A., 1999. "Modeling water resources management at the basin level: review and future directions," IWMI Books, Reports H024075, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mojtaba Sadegh & Reza Kerachian, 2011. "Water Resources Allocation Using Solution Concepts of Fuzzy Cooperative Games: Fuzzy Least Core and Fuzzy Weak Least Core," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2543-2573, August.
    2. Jianshi Zhao & Zhongjing Wang & Daoxi Wang & Dangxian Wang, 2009. "Evaluation of Economic and Hydrologic Impacts of Unified Water Flow Regulation in the Yellow River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(7), pages 1387-1401, May.
    3. Rakotoarimanana Zy Harifidy & Rakotoarimanana Zy Misa Harivelo & Ishidaira Hiroshi & Magome Jun & Souma Kazuyoshi, 2022. "A Systematic Review of Water Resources Assessment at a Large River Basin Scale: Case of the Major River Basins in Madagascar," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    4. Gabrielle Demange, 2021. "On the resolution of cross-liabilities," PSE Working Papers halshs-03151128, HAL.
    5. Chebil, A. & Frija, A. & Thabet, C., 2012. "Irrigation water pricing between governmental policies and farmers’ perception: Implications for green-houses horticultural production in Teboulba (Tunisia)," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 11(2), pages 1-11.
    6. Mehmet Kucukmehmetoglu & Jean-Michel Guldmann, 2005. "Multi-Objective Programming for the Allocation of Trans-Boundary Water Resources - the Case of the Euphrates and Tigris," ERSA conference papers ersa05p9, European Regional Science Association.
    7. B. Golany & N. Goldberg & U. Rothblum, 2015. "Allocating multiple defensive resources in a zero-sum game setting," Annals of Operations Research, Springer, vol. 225(1), pages 91-109, February.
    8. George Kozanidis, 2009. "Solving the linear multiple choice knapsack problem with two objectives: profit and equity," Computational Optimization and Applications, Springer, vol. 43(2), pages 261-294, June.
    9. Amy Givler Chapman & John E. Mitchell, 2018. "A fair division approach to humanitarian logistics inspired by conditional value-at-risk," Annals of Operations Research, Springer, vol. 262(1), pages 133-151, March.
    10. Hervé Moulin & Jay Sethuraman, 2013. "The Bipartite Rationing Problem," Operations Research, INFORMS, vol. 61(5), pages 1087-1100, October.
    11. Dugardin, Frédéric & Yalaoui, Farouk & Amodeo, Lionel, 2010. "New multi-objective method to solve reentrant hybrid flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 203(1), pages 22-31, May.
    12. Hanif D. Sherali & Raymond W. Staats & Antonio A. Trani, 2003. "An Airspace Planning and Collaborative Decision-Making Model: Part I—Probabilistic Conflicts, Workload, and Equity Considerations," Transportation Science, INFORMS, vol. 37(4), pages 434-456, November.
    13. Barker, Randolph & Dawe, D. & Inocencio, A., 2003. "Economics of water productivity in managing water for agriculture," Book Chapters,, International Water Management Institute.
    14. Javier Arin & Juan Miguel Benito, 2012. "Lorenz and lexicographic maximal allocations for bankruptcy problems," Documentos de Trabajo - Lan Gaiak Departamento de Economía - Universidad Pública de Navarra 1202, Departamento de Economía - Universidad Pública de Navarra.
    15. Foster, T. & Brozović, N., 2018. "Simulating Crop-Water Production Functions Using Crop Growth Models to Support Water Policy Assessments," Ecological Economics, Elsevier, vol. 152(C), pages 9-21.
    16. Luijten, J. C. & Knapp, E. B. & Jones, J. W., 2001. "A tool for community-based assessment of the implications of development on water security in hillside watersheds," Agricultural Systems, Elsevier, vol. 70(2-3), pages 603-622.
    17. Alexandre Jacquillat & Vikrant Vaze, 2018. "Interairline Equity in Airport Scheduling Interventions," Transportation Science, INFORMS, vol. 52(4), pages 941-964, August.
    18. Márcia G. Alcoforado de Moraes & Yony Sampaio & José Almir Cirilo, 2006. "Integraçãoo dos Componentes Econômico e Hidrológico na Modelagem de Alocação Ótima de Água para Apoio a Gestão de Recursos Hídricos: Uma Aplicação na Bacia do Rio Pirapama," Economia, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics], vol. 7(2), pages 331-364.
    19. Selcuk Karabati & Panagiotis Kouvelis & Gang Yu, 2001. "A Min-Max-Sum Resource Allocation Problem and Its Applications," Operations Research, INFORMS, vol. 49(6), pages 913-922, December.
    20. Houba, Harold & Pham Do, Kim Hang & Zhu, Xueqin, 2012. "Transboundary Water Management: A joint management approach to the Mekong River Basin," 2012 Conference (56th), February 7-10, 2012, Fremantle, Australia 125063, Australian Agricultural and Resource Economics Society.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:190:y:2008:i:3:p:798-817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.