IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i3p869-d314602.html
   My bibliography  Save this article

Adoption of Precision Farming Tools: The Case of Italian Farmers

Author

Listed:
  • Yari Vecchio

    (Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia (Bo), Italy)

  • Giulio Paolo Agnusdei

    (Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy)

  • Pier Paolo Miglietta

    (Faculty of Science and Technology, Free University of Bolzano/Bozen, 39100 Bolzano/Bozen, Italy)

  • Fabian Capitanio

    (Department of Agricultural Economics and Policy, University of Naples Federico II, 80055 Portici NA, Italy)

Abstract

The process of adopting innovation, especially with regard to precision farming (PF), is inherently complex and social, and influenced by producers, change agents, social norms and organizational pressure. An empirical analysis was conducted among Italian farmers to measure the drivers and clarify “bottlenecks” in the adoption of agricultural innovation. The purpose of this study was to analyze the socio-structural and complexity factors that affect the probability to adopt innovations and the determinants that drive an individual’s decisions. Preliminary results found high levels of adoption among younger farmers, those that had a high level of education, those with high intensity of information, with large farm sizes, and high labor intensity. A logit model was used to understand the role played by labor intensity and perceived in the adoption process. In light of the Common Agricultural Policy Reform post 2020, the findings suggest relevant policy implications, such as the need to increase awareness of PF tools and foster dissemination of information aimed at reducing the degree of perceived complexity.

Suggested Citation

  • Yari Vecchio & Giulio Paolo Agnusdei & Pier Paolo Miglietta & Fabian Capitanio, 2020. "Adoption of Precision Farming Tools: The Case of Italian Farmers," IJERPH, MDPI, vol. 17(3), pages 1-16, January.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:3:p:869-:d:314602
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/3/869/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/3/869/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sally Brooks & Michael Loevinsohn, 2011. "Shaping agricultural innovation systems responsive to food insecurity and climate change," Natural Resources Forum, Blackwell Publishing, vol. 35(3), pages 185-200, August.
    2. Federica Caffaro & Eugenio Cavallo, 2019. "The Effects of Individual Variables, Farming System Characteristics and Perceived Barriers on Actual Use of Smart Farming Technologies: Evidence from the Piedmont Region, Northwestern Italy," Agriculture, MDPI, vol. 9(5), pages 1-13, May.
    3. Franklin Simtowe & Solomon Asfaw & Tsedeke Abate, 2016. "Determinants of agricultural technology adoption under partial population awareness: the case of pigeonpea in Malawi," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 4(1), pages 1-21, December.
    4. Daberkow, Stan G. & McBride, William D., 1998. "Socioeconomic Profiles of Early Adopters of Precision Agriculture Technologies," Journal of Agribusiness, Agricultural Economics Association of Georgia, vol. 16(2), pages 1-18.
    5. Cees Leeuwis, 2000. "Reconceptualizing Participation for Sustainable Rural Development: Towards a Negotiation Approach," Development and Change, International Institute of Social Studies, vol. 31(5), pages 931-959, November.
    6. Walton, Jonathan C. & Lambert, Dayton M. & Roberts, Roland K. & Larson, James A. & English, Burton C. & Larkin, Sherry L. & Martin, Steven W. & Marra, Michele C. & Paxton, Kenneth W. & Reeves, Jeanne , 2008. "Adoption and Abandonment of Precision Soil Sampling in Cotton Production," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 33(3), pages 1-21.
    7. Feder, Gershon & Just, Richard E & Zilberman, David, 1985. "Adoption of Agricultural Innovations in Developing Countries: A Survey," Economic Development and Cultural Change, University of Chicago Press, vol. 33(2), pages 255-298, January.
    8. Joost M.E. Pennings & Scott H. Irwin & Darrel L. Good, 2002. "Surveying Farmers: A Case Study," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 24(1), pages 266-277.
    9. Andy Hall & Norman Clark, 2010. "What do complex adaptive systems look like and what are the implications for innovation policy?," Journal of International Development, John Wiley & Sons, Ltd., vol. 22(3), pages 308-324.
    10. Nancy McCarthy & Leslie Lipper & David Zilberman, 2018. "Economics of Climate Smart Agriculture: An Overview," Natural Resource Management and Policy, in: Leslie Lipper & Nancy McCarthy & David Zilberman & Solomon Asfaw & Giacomo Branca (ed.), Climate Smart Agriculture, pages 31-47, Springer.
    11. Kassie, Menale & Jaleta, Moti & Shiferaw, Bekele & Mmbando, Frank & Mekuria, Mulugetta, 2013. "Adoption of interrelated sustainable agricultural practices in smallholder systems: Evidence from rural Tanzania," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 525-540.
    12. Leslie Lipper & David Zilberman, 2018. "A Short History of the Evolution of the Climate Smart Agriculture Approach and Its Links to Climate Change and Sustainable Agriculture Debates," Natural Resource Management and Policy, in: Leslie Lipper & Nancy McCarthy & David Zilberman & Solomon Asfaw & Giacomo Branca (ed.), Climate Smart Agriculture, pages 13-30, Springer.
    13. Lambrecht, Isabel & Vanlauwe, Bernard & Merckx, Roel & Maertens, Miet, 2014. "Understanding the Process of Agricultural Technology Adoption: Mineral Fertilizer in Eastern DR Congo," World Development, Elsevier, vol. 59(C), pages 132-146.
    14. Walton, Jonathan C. & Larson, James A. & Roberts, Roland K. & Lambert, Dayton M. & English, Burton C. & Larkin, Sherry L. & Marra, Michele C. & Martin, Steven W. & Paxton, Kenneth W. & Reeves, Jeanne , 2010. "Factors Influencing Farmer Adoption of Portable Computers for Site-Specific Management: A Case Study for Cotton Production," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 42(2), pages 193-209, May.
    15. Biggs, Stephen D., 1995. "Farming systems research and rural poverty: Relationships between context and content," Agricultural Systems, Elsevier, vol. 47(2), pages 161-174.
    16. Giovanni Pino & Pierluigi Toma & Cristian Rizzo & Pier Paolo Miglietta & Alessandro M. Peluso & Gianluigi Guido, 2017. "Determinants of Farmers’ Intention to Adopt Water Saving Measures: Evidence from Italy," Sustainability, MDPI, vol. 9(1), pages 1-14, January.
    17. Paxton, Kenneth W. & Mishra, Ashok K. & Chintawar, Sachin & Roberts, Roland K. & Larson, James A. & English, Burton C. & Lambert, Dayton M. & Marra, Michele C. & Larkin, Sherry L. & Reeves, Jeanne M. , 2011. "Intensity of Precision Agriculture Technology Adoption by Cotton Producers," Agricultural and Resource Economics Review, Cambridge University Press, vol. 40(1), pages 133-144, April.
    18. Leslie Lipper & Nancy McCarthy & David Zilberman & Solomon Asfaw & Giacomo Branca (ed.), 2018. "Climate Smart Agriculture," Natural Resource Management and Policy, Springer, number 978-3-319-61194-5, December.
    19. Robert Finger & Scott M. Swinton & Nadja El Benni & Achim Walter, 2019. "Precision Farming at the Nexus of Agricultural Production and the Environment," Annual Review of Resource Economics, Annual Reviews, vol. 11(1), pages 313-335, October.
    20. Bernard Hategekimana & Michael Trant, 2002. "Adoption and Diffusion of New Technology in Agriculture: Genetically Modified Corn and Soybeans," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 50(4), pages 357-371, December.
    21. Gershon Feder & Roger Slade, 1984. "The Acquisition of Information and the Adoption of New Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 66(3), pages 312-320.
    22. Pandit, Mahesh & Paudel, Krishna P. & Mishra, Ashok K. & Segarra, Eduardo, 2012. "Adoption and Nonadoption of Precision Farming Technologies by Cotton Farmers," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 125004, Agricultural and Applied Economics Association.
    23. Hounkonnou, Dominique & Kossou, Dansou & Kuyper, Thomas W. & Leeuwis, Cees & Nederlof, E. Suzanne & Röling, Niels & Sakyi-Dawson, Owuraku & Traoré, Mamoudou & van Huis, Arnold, 2012. "An innovation systems approach to institutional change: Smallholder development in West Africa," Agricultural Systems, Elsevier, vol. 108(C), pages 74-83.
    24. Schut, Marc & Klerkx, Laurens & Rodenburg, Jonne & Kayeke, Juma & Hinnou, Léonard C. & Raboanarielina, Cara M. & Adegbola, Patrice Y. & van Ast, Aad & Bastiaans, Lammert, 2015. "RAAIS: Rapid Appraisal of Agricultural Innovation Systems (Part I). A diagnostic tool for integrated analysis of complex problems and innovation capacity," Agricultural Systems, Elsevier, vol. 132(C), pages 1-11.
    25. McBride, William D. & Daberkow, Stan G., 2003. "Information And The Adoption Of Precision Farming Technologies," Journal of Agribusiness, Agricultural Economics Association of Georgia, vol. 21(1), pages 1-18.
    26. Läpple, Doris & Renwick, Alan & Thorne, Fiona, 2015. "Measuring and understanding the drivers of agricultural innovation: Evidence from Ireland," Food Policy, Elsevier, vol. 51(C), pages 1-8.
    27. Howard D. Leathers & Melinda Smale, 1991. "A Bayesian Approach to Explaining Sequential Adoption of Components of a Technological Package," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 73(3), pages 734-742.
    28. Lambert, Dayton M. & Paudel, Krishna P. & Larson, James A., 2015. "Bundled Adoption of Precision Agriculture Technologies by Cotton Producers," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 40(2), pages 1-21, May.
    29. Nassul Ssentamu Kabunga & Thomas Dubois & Matin Qaim, 2012. "Heterogeneous information exposure and technology adoption: the case of tissue culture bananas in Kenya," Agricultural Economics, International Association of Agricultural Economists, vol. 43(5), pages 473-486, September.
    30. Paul Diederen & Hans Van Meijl & Arjan Wolters & Katarzyna Bijak, 2003. "Innovation adoption in agriculture : innovators, early adopters and laggards," Cahiers d'Economie et Sociologie Rurales, INRA Department of Economics, vol. 67, pages 29-50.
    31. Klerkx, Laurens & Aarts, Noelle & Leeuwis, Cees, 2010. "Adaptive management in agricultural innovation systems: The interactions between innovation networks and their environment," Agricultural Systems, Elsevier, vol. 103(6), pages 390-400, July.
    32. Vecchio, Yari & De Rosa, Marcello & Adinolfi, Felice & Bartoli, Luca & Masi, Margherita, 2020. "Adoption of precision farming tools: A context-related analysis," Land Use Policy, Elsevier, vol. 94(C).
    33. Hamed Taherdoost, 2016. "Sampling Methods in Research Methodology; How to Choose a Sampling Technique for Research," Post-Print hal-02546796, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sören Mohrmann & Verena Otter, 2022. "Categorisation of Biogas Plant Operators in Germany with Regards to Their Intention to Use Straw Pellets as Innovative and Sustainable Substrate Alternative," Energies, MDPI, vol. 16(1), pages 1-26, December.
    2. Shoumin Yue & Ying Xue & Jie Lyu & Kangkang Wang, 2023. "The Effect of Information Acquisition Ability on Farmers’ Agricultural Productive Service Behavior: An Empirical Analysis of Corn Farmers in Northeast China," Agriculture, MDPI, vol. 13(3), pages 1-26, February.
    3. McCaig, Melanie & Rezania, Davar & Dara, Rozita, 2023. "Framing the response to IoT in agriculture: A discourse analysis," Agricultural Systems, Elsevier, vol. 204(C).
    4. Silvia Solimene & Daniela Coluccia & Alessandro Bernardo, 2023. "Environmental Impact of Different Business Models: An LCA Study of Fresh Tomato Production in Italy," Sustainability, MDPI, vol. 15(13), pages 1-17, June.
    5. Johannes Munz & Heinrich Schuele, 2022. "Influencing the Success of Precision Farming Technology Adoption—A Model-Based Investigation of Economic Success Factors in Small-Scale Agriculture," Agriculture, MDPI, vol. 12(11), pages 1-21, October.
    6. Monteiro Moretti, Débora & Baum, Chad M. & Ehlers, Melf-Hinrich & Finger, Robert & Bröring, Stefanie, 2023. "Exploring actors' perceptions of the precision agriculture innovation system – A Group Concept Mapping approach in Germany and Switzerland," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    7. Silvia Macchia, 2022. "Unbundling the information needs of new-generation agricultural companies," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(2 Suppl.), pages 117-141.
    8. Mario Fargnoli & Mara Lombardi, 2020. "NOSACQ-50 for Safety Climate Assessment in Agricultural Activities: A Case Study in Central Italy," IJERPH, MDPI, vol. 17(24), pages 1-20, December.
    9. Hongpeng Guo & Yujie Xia & Chulin Pan & Qingyong Lei & Hong Pan, 2022. "Analysis in the Influencing Factors of Climate-Responsive Behaviors of Maize Growers: Evidence from China," IJERPH, MDPI, vol. 19(7), pages 1-17, April.
    10. Vecchio, Yari & Di Pasquale, Jorgelina & Del Giudice, Teresa & Pauselli, Gregorio & Masi, Margherita & Adinolfi, Felice, 2022. "Precision farming: what do Italian farmers really think? An application of the Q methodology," Agricultural Systems, Elsevier, vol. 201(C).
    11. Hannah Briony Thorne & Jenna Axtens & Talitha Best, 2022. "Perceptual Factors Influencing the Adoption of Innovative Tissue Culture Technology by the Australian Avocado Industry," Agriculture, MDPI, vol. 12(9), pages 1-11, August.
    12. Nugra Irianta Denashurya & Nurliza & Eva Dolorosa & Dewi Kurniati & Denah Suswati, 2023. "Overcoming Barriers to ISPO Certification: Analyzing the Drivers of Sustainable Agricultural Adoption among Farmers," Sustainability, MDPI, vol. 15(23), pages 1-25, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vecchio, Yari & De Rosa, Marcello & Adinolfi, Felice & Bartoli, Luca & Masi, Margherita, 2020. "Adoption of precision farming tools: A context-related analysis," Land Use Policy, Elsevier, vol. 94(C).
    2. Yari Vecchio & Marcello De Rosa & Gregorio Pauselli & Margherita Masi & Felice Adinolfi, 2022. "The leading role of perception: the FACOPA model to comprehend innovation adoption," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 10(1), pages 1-19, December.
    3. Vecchio, Yari & Di Pasquale, Jorgelina & Del Giudice, Teresa & Pauselli, Gregorio & Masi, Margherita & Adinolfi, Felice, 2022. "Precision farming: what do Italian farmers really think? An application of the Q methodology," Agricultural Systems, Elsevier, vol. 201(C).
    4. Shang, Linmei & Heckelei, Thomas & Gerullis, Maria K. & Börner, Jan & Rasch, Sebastian, 2021. "Adoption and diffusion of digital farming technologies - integrating farm-level evidence and system interaction," Agricultural Systems, Elsevier, vol. 190(C).
    5. Schut, Marc & van Asten, Piet & Okafor, Chris & Hicintuka, Cyrille & Mapatano, Sylvain & Nabahungu, Nsharwasi Léon & Kagabo, Desire & Muchunguzi, Perez & Njukwe, Emmanuel & Dontsop-Nguezet, Paul M. & , 2016. "Sustainable intensification of agricultural systems in the Central African Highlands: The need for institutional innovation," Agricultural Systems, Elsevier, vol. 145(C), pages 165-176.
    6. Barnes, A.P. & Soto, I. & Eory, V. & Beck, B. & Balafoutis, A. & Sánchez, B. & Vangeyte, J. & Fountas, S. & van der Wal, T. & Gómez-Barbero, M., 2019. "Exploring the adoption of precision agricultural technologies: A cross regional study of EU farmers," Land Use Policy, Elsevier, vol. 80(C), pages 163-174.
    7. Micheels, Eric T. & Nolan, James F., 2016. "Examining the effects of absorptive capacity and social capital on the adoption of agricultural innovations: A Canadian Prairie case study," Agricultural Systems, Elsevier, vol. 145(C), pages 127-138.
    8. Faruque-As-Sunny & Zuhui Huang & Taonarufaro Tinaye Pemberai Karimanzira, 2018. "Investigating Key Factors Influencing Farming Decisions Based on Soil Testing and Fertilizer Recommendation Facilities (STFRF)—A Case Study on Rural Bangladesh," Sustainability, MDPI, vol. 10(11), pages 1-24, November.
    9. Shang, Linmei & Heckelei, Thomas & Börner, Jan & Rasch, Sebastian, 2020. "Adoption and Diffusion of Digital Farming Technologies – Integrating Farm-Level Evidence and System-Level Interaction," 60th Annual Conference, Halle/ Saale, Germany, September 23-25, 2020 305586, German Association of Agricultural Economists (GEWISOLA).
    10. Aloyce R Kaliba & Kizito Mazvimavi & Theresia L Gregory & Frida M Mgonja & Mary Mgonja, 2018. "Factors affecting adoption of improved sorghum varieties in Tanzania under information and capital constraints," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 6(1), pages 1-21, December.
    11. Schut, Marc & Klerkx, Laurens & Rodenburg, Jonne & Kayeke, Juma & Hinnou, Léonard C. & Raboanarielina, Cara M. & Adegbola, Patrice Y. & van Ast, Aad & Bastiaans, Lammert, 2015. "RAAIS: Rapid Appraisal of Agricultural Innovation Systems (Part I). A diagnostic tool for integrated analysis of complex problems and innovation capacity," Agricultural Systems, Elsevier, vol. 132(C), pages 1-11.
    12. Priscilla Wainaina & Songporne Tongruksawattana & Matin Qaim, 2016. "Tradeoffs and complementarities in the adoption of improved seeds, fertilizer, and natural resource management technologies in Kenya," Agricultural Economics, International Association of Agricultural Economists, vol. 47(3), pages 351-362, May.
    13. Kangogo, Daniel & Dentoni, Domenico & Bijman, Jos, 2021. "Adoption of climate‐smart agriculture among smallholder farmers: Does farmer entrepreneurship matter?," Land Use Policy, Elsevier, vol. 109(C).
    14. Lambrecht, Isabel & Vanlauwe, Bernard & Maertens, Miet, 2014. "Integrated soil fertility management: from concept to practice in eastern DR Congo," Working Papers 180062, Katholieke Universiteit Leuven, Centre for Agricultural and Food Economics.
    15. Pigford, Ashlee-Ann E. & Hickey, Gordon M. & Klerkx, Laurens, 2018. "Beyond agricultural innovation systems? Exploring an agricultural innovation ecosystems approach for niche design and development in sustainability transitions," Agricultural Systems, Elsevier, vol. 164(C), pages 116-121.
    16. Jenkins, Amanda & Velandia, Margarita & Lambert, Dayton M. & Roberts, Roland K. & Larson, James A. & English, Burton C. & Martin, Steven W., 2011. "Factors Influencing the Selection of Precision Farming Information Sources by Cotton Producers," Agricultural and Resource Economics Review, Cambridge University Press, vol. 40(2), pages 307-320, September.
    17. Faruque As Sunny & Linlin Fu & Md Sadique Rahman & Zuhui Huang, 2022. "Determinants and Impact of Solar Irrigation Facility (SIF) Adoption: A Case Study in Northern Bangladesh," Energies, MDPI, vol. 15(7), pages 1-17, March.
    18. Fan, Yubing & McCann, Laura M., 2017. "Farmers’ Adoption of Pressure Irrigation Systems and Scientific Scheduling Practices: An Application of Multilevel Models," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258458, Agricultural and Applied Economics Association.
    19. Gregory Amacher & Jeffrey Alwang, 2004. "Productivity and Land Enhancing Technologies in Northern Ethiopia: Health, Public Investments, and Sequential Adoption," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(2), pages 321-331.
    20. L. Toma & A. P. Barnes & L.-A. Sutherland & S. Thomson & F. Burnett & K. Mathews, 2018. "Impact of information transfer on farmers’ uptake of innovative crop technologies: a structural equation model applied to survey data," The Journal of Technology Transfer, Springer, vol. 43(4), pages 864-881, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:3:p:869-:d:314602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.