IDEAS home Printed from https://ideas.repec.org/h/spr/nrmchp/978-3-319-61194-5_2.html
   My bibliography  Save this book chapter

A Short History of the Evolution of the Climate Smart Agriculture Approach and Its Links to Climate Change and Sustainable Agriculture Debates

In: Climate Smart Agriculture

Author

Listed:
  • Leslie Lipper

    (ISPC-CGIAR)

  • David Zilberman

    (University of California Berkeley)

Abstract

Climate Smart Agriculture (CSA) is an approach to guide the management of agriculture in the era of climate change. The concept was first launched in 2009, and since then has been reshaped through inputs and interactions of multiple stakeholders involved in developing and implementing the concept. CSA aims to provide globally applicable principles on managing agriculture for food security under climate change that could provide a basis for policy support and recommendations by multilateral organizations, such as UN’s FAO. The major features of the CSA approach were developed in response to limitations in the international climate policy arena in the understanding of agriculture’s role in food security and its potential for capturing synergies between adaptation and mitigation. Recent controversies which have arisen over CSA are rooted in longstanding debates in both the climate and sustainable agricultural development policy spheres. These include the role of developing countries, and specifically their agricultural sectors, in reducing global GHG emissions, as well as the choice of technologies which may best promote sustainable forms of agriculture. Since the term ʻCSA’ was widely adopted before the development of a formal conceptual frame and tools to implement the approach, there has been considerable variation in meanings applied to the term, which also contributed to controversies. As the body of work on the concept, methods, tools and applications of the CSA approach expands, it is becoming clearer what it can offer. Ultimately, CSA’s utility will be judeged by its effectiveness in integrating climate change response into sustainable agricultural development strategies on the ground.

Suggested Citation

  • Leslie Lipper & David Zilberman, 2018. "A Short History of the Evolution of the Climate Smart Agriculture Approach and Its Links to Climate Change and Sustainable Agriculture Debates," Natural Resource Management and Policy, in: Leslie Lipper & Nancy McCarthy & David Zilberman & Solomon Asfaw & Giacomo Branca (ed.), Climate Smart Agriculture, pages 13-30, Springer.
  • Handle: RePEc:spr:nrmchp:978-3-319-61194-5_2
    DOI: 10.1007/978-3-319-61194-5_2
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Das, Usha & Ansari, M.A. & Ghosh, Souvik, 2022. "Effectiveness and upscaling potential of climate smart agriculture interventions: Farmers' participatory prioritization and livelihood indicators as its determinants," Agricultural Systems, Elsevier, vol. 203(C).
    2. Germer, Leah A. & van Middelaar, Corina E. & Oosting, Simon J. & Gerber, Pierre J., 2023. "When and where are livestock climate-smart? A spatial-temporal framework for comparing the climate change and food security synergies and tradeoffs of Sub-Saharan African livestock systems," Agricultural Systems, Elsevier, vol. 210(C).
    3. Viviana Ferrario, 2021. "Learning from Agricultural Heritage? Lessons of Sustainability from Italian “Coltura Promiscua”," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    4. Payam Memarbashi & Gholamreza Mojarradi & Marzieh Keshavarz, 2022. "Climate-Smart Agriculture in Iran: Strategies, Constraints and Drivers," Sustainability, MDPI, vol. 14(23), pages 1-24, November.
    5. Daniel El Chami & André Daccache & Maroun El Moujabber, 2020. "How Can Sustainable Agriculture Increase Climate Resilience? A Systematic Review," Sustainability, MDPI, vol. 12(8), pages 1-23, April.
    6. Arenas-Calle, Laura N. & Ramirez-Villegas, Julian & Whitfield, Stephen & Challinor, Andrew J., 2021. "Design of a Soil-based Climate-Smartness Index (SCSI) using the trend and variability of yields and soil organic carbon," Agricultural Systems, Elsevier, vol. 190(C).
    7. Stan Selbonne & Loïc Guindé & François Causeret & Pierre Chopin & Jorge Sierra & Régis Tournebize & Jean-Marc Blazy, 2023. "How to Measure the Performance of Farms with Regard to Climate-Smart Agriculture Goals? A Set of Indicators and Its Application in Guadeloupe," Agriculture, MDPI, vol. 13(2), pages 1-21, January.
    8. Kansanga, Moses Mosonsieyiri & Kangmennaang, Joseph & Bezner Kerr, Rachel & Lupafya, Esther & Dakishoni, Laifolo & Luginaah, Isaac, 2021. "Agroecology and household production diversity and dietary diversity: Evidence from a five-year agroecological intervention in rural Malawi," Social Science & Medicine, Elsevier, vol. 288(C).
    9. Victor O. Abegunde & Ajuruchukwu Obi, 2022. "The Role and Perspective of Climate Smart Agriculture in Africa: A Scientific Review," Sustainability, MDPI, vol. 14(4), pages 1-15, February.
    10. Victor O. Abegunde & Melusi Sibanda & Ajuruchukwu Obi, 2020. "Mainstreaming Climate-Smart Agriculture in Small-Scale Farming Systems: A Holistic Nonparametric Applicability Assessment in South Africa," Agriculture, MDPI, vol. 10(3), pages 1-18, February.
    11. Bongole, Abiud J., 2022. "Welfare Effects of Farming Household' Usage of Combination of Climate Smart Agriculture Practises in the Southern Highlands of Tanzania," African Journal of Economic Review, African Journal of Economic Review, vol. 10(2), March.
    12. Theodrose Sisay & Kindie Tesfaye & Mengistu Ketema & Nigussie Dechassa & Mezegebu Getnet, 2023. "Climate-Smart Agriculture Technologies and Determinants of Farmers’ Adoption Decisions in the Great Rift Valley of Ethiopia," Sustainability, MDPI, vol. 15(4), pages 1-12, February.
    13. Issahaku, Gazali & Abdulai, Awudu, 2020. "Adoption of climate-smart practices and its impact on farm performance and risk exposure among smallholder farmers in Ghana," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(2), April.
    14. van der Haar, S. & Gallagher, E.J. & Schoneveld, G.C. & Slingerland, M.A. & Leeuwis, C., 2023. "Climate-smart cocoa in forest landscapes: Lessons from institutional innovations in Ghana," Land Use Policy, Elsevier, vol. 132(C).
    15. Dunnett, A. & Shirsath, P.B. & Aggarwal, P.K. & Thornton, P. & Joshi, P.K. & Pal, B.D. & Khatri-Chhetri, A. & Ghosh, J., 2018. "Multi-objective land use allocation modelling for prioritizing climate-smart agricultural interventions," Ecological Modelling, Elsevier, vol. 381(C), pages 23-35.
    16. Collins-Sowah, Peron A., 2018. "Theoretical conception of climate-smart agriculture," Working Papers of Agricultural Policy WP2018-02, University of Kiel, Department of Agricultural Economics, Chair of Agricultural Policy.
    17. Yari Vecchio & Giulio Paolo Agnusdei & Pier Paolo Miglietta & Fabian Capitanio, 2020. "Adoption of Precision Farming Tools: The Case of Italian Farmers," IJERPH, MDPI, vol. 17(3), pages 1-16, January.
    18. Alice Joan G. Ferrer & Le Ha Thanh & Pham Hong Chuong & Nguyen Tuan Kiet & Vu Thu Trang & Trinh Cong Duc & Jinky C. Hopanda & Benedict Mark Carmelita & Eisen Bernard Bernardo, 2023. "Farming household adoption of climate-smart agricultural technologies: evidence from North-Central Vietnam," Asia-Pacific Journal of Regional Science, Springer, vol. 7(2), pages 641-663, June.
    19. Giulio Fusco & Marta Melgiovanni & Donatella Porrini & Traci Michelle Ricciardo, 2020. "How to Improve the Diffusion of Climate-Smart Agriculture: What the Literature Tells us," Sustainability, MDPI, vol. 12(12), pages 1-15, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nrmchp:978-3-319-61194-5_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.