IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i11p1773-d953601.html
   My bibliography  Save this article

Influencing the Success of Precision Farming Technology Adoption—A Model-Based Investigation of Economic Success Factors in Small-Scale Agriculture

Author

Listed:
  • Johannes Munz

    (Institute of Applied Agricultural Research, Nuertingen-Geislingen University, Hechingerstr. 12, D-72622 Nuertingen, Germany)

  • Heinrich Schuele

    (Faculty of Agriculture, Economics and Management, Nuertingen-Geislingen University, Neckarsteige 6-10, D-72622 Nuertingen, Germany)

Abstract

Even more than 30 years after the introduction of precision farming technologies and studies of their benefits in terms of productivity gains and environmental improvements, adoption rates, especially for variable-rate technologies, are very low. In particular, in smallholder areas, farm managers are reluctant to adopt these technologies. Therefore, this study identifies factors that hinder or facilitate adoption from an economic perspective. Using a model-based sensitivity analysis with three farms of different sizes (11 ha, 57 ha and 303 ha), it is shown that larger farms have higher resilience to external factors due to economies of scale. In addition, it is clarified that the certainty of obtaining additional benefits with GPS guidance systems can explain the higher adoption rates in farming practice, although the additional benefits (per hectare and year) are much lower for this technology than for variable-rate technologies. Small farms (>30 ha) are by no means excluded from the use of digital technologies, as it is shown that the influence of learning costs on profitability is very low, low subsidies can lead to a drastic reduction in the minimum farm size and the presence of low-cost technologies is an efficient solution which allows small farms to participate in the digital transformation of agriculture.

Suggested Citation

  • Johannes Munz & Heinrich Schuele, 2022. "Influencing the Success of Precision Farming Technology Adoption—A Model-Based Investigation of Economic Success Factors in Small-Scale Agriculture," Agriculture, MDPI, vol. 12(11), pages 1-21, October.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:11:p:1773-:d:953601
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/11/1773/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/11/1773/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shockley, Jordan M. & Dillon, Carl R. & Stombaugh, Timothy S., 2011. "A Whole Farm Analysis of the Influence of Auto-Steer Navigation on Net Returns, Risk, and Production Practices," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 43(1), pages 1-19, February.
    2. Yari Vecchio & Giulio Paolo Agnusdei & Pier Paolo Miglietta & Fabian Capitanio, 2020. "Adoption of Precision Farming Tools: The Case of Italian Farmers," IJERPH, MDPI, vol. 17(3), pages 1-16, January.
    3. Lambert, Dayton M. & Lowenberg-DeBoer, James & Griffin, Terry W. & Peone, J. & Payne, Tim & Daberkow, Stan G., 2004. "Adoption, Profitability, And Making Better Use Of Precision Farming Data," Staff Papers 28615, Purdue University, Department of Agricultural Economics.
    4. Meyer-Aurich, Andreas & Weersink, Alfons & Gandorfer, Markus & Wagner, Peter, 2010. "Optimal site-specific fertilization and harvesting strategies with respect to crop yield and quality response to nitrogen," Agricultural Systems, Elsevier, vol. 103(7), pages 478-485, September.
    5. Schimmelpfennig, David, 2016. "Farm Profits and Adoption of Precision Agriculture," Economic Research Report 249773, United States Department of Agriculture, Economic Research Service.
    6. Robert Finger & Scott M. Swinton & Nadja El Benni & Achim Walter, 2019. "Precision Farming at the Nexus of Agricultural Production and the Environment," Annual Review of Resource Economics, Annual Reviews, vol. 11(1), pages 313-335, October.
    7. Hugo Valin & Ronald D. Sands & Dominique van der Mensbrugghe & Gerald C. Nelson & Helal Ahammad & Elodie Blanc & Benjamin Bodirsky & Shinichiro Fujimori & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe, 2014. "The future of food demand: understanding differences in global economic models," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 51-67, January.
    8. Gandorfer, Markus & Rajsic, Predrag, 2008. "Modeling Economic Optimum Nitrogen Rates for Winter Wheat When Inputs Affect Yield and Output-Price," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 9(2).
    9. Faria, Ana & Fenn, Paul & Bruce, Alistair, 2003. "A Count Data Model of Technology Adoption," The Journal of Technology Transfer, Springer, vol. 28(1), pages 63-79, January.
    10. Madhu Khanna & Onesime Faustin Epouhe & Robert Hornbaker, 1999. "Site-Specific Crop Management: Adoption Patterns and Incentives," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 21(2), pages 455-472.
    11. Vecchio, Yari & De Rosa, Marcello & Adinolfi, Felice & Bartoli, Luca & Masi, Margherita, 2020. "Adoption of precision farming tools: A context-related analysis," Land Use Policy, Elsevier, vol. 94(C).
    12. Schimmelpfennig, David & Ebel, Robert, 2016. "Sequential Adoption and Cost Savings from Precision Agriculture," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 41(1), pages 1-19, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Camelia Teodorescu & Marin Burcea & Ana-Irina Lequeux-Dincă & Florentina-Cristina Merciu & Adrian-Nicolae Jipa & Laurenţiu-Ştefan Szemkovics, 2023. "Swine Breeding in the Villages of Vâlcea County, Oltenia (Romania)—Tradition or Necessity?," Agriculture, MDPI, vol. 13(3), pages 1-31, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Tong & Jin, Hailong & Sieverding, Heidi & Kumar, Sandeep & Miao, Yuxin & Rao, Xudong & Obembe, Oladipo & Mirzakhani Nafchi, Ali & Redfearn, Daren & Cheye, Stephen, 2023. "Understanding farmer views of precision agriculture profitability in the U.S. Midwest," Ecological Economics, Elsevier, vol. 213(C).
    2. Nathan D. DeLay & Nathanael M. Thompson & James R. Mintert, 2022. "Precision agriculture technology adoption and technical efficiency," Journal of Agricultural Economics, Wiley Blackwell, vol. 73(1), pages 195-219, February.
    3. Silvia Macchia, 2022. "Unbundling the information needs of new-generation agricultural companies," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(2 Suppl.), pages 117-141.
    4. Margherita Masi & Jorgelina Di Pasquale & Yari Vecchio & Fabian Capitanio, 2023. "Precision Farming: Barriers of Variable Rate Technology Adoption in Italy," Land, MDPI, vol. 12(5), pages 1-16, May.
    5. Wang, Tong & Jin, Hailong & Sieverding, Heidi L. & Rao, Xudong & Miao, Yuxin & Kumar, Sandeep & Redfearn, Daren & Nafchi, Ali, 2022. "Understanding farmer perceptions of precision agriculture profitability in the U.S. Midwest," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322502, Agricultural and Applied Economics Association.
    6. Späti, Karin & Huber, Robert & Finger, Robert, 2021. "Benefits of Increasing Information Accuracy in Variable Rate Technologies," Ecological Economics, Elsevier, vol. 185(C).
    7. Argento, F. & Liebisch, F. & Anken, T. & Walter, A. & El Benni, N., 2022. "Investigating two solutions to balance revenues and N surplus in Swiss winter wheat," Agricultural Systems, Elsevier, vol. 201(C).
    8. Dhoubhadel, Sunil P., 2020. "Precision Agriculture Technologies and Farm Profitability," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304229, Agricultural and Applied Economics Association.
    9. Vecchio, Yari & Di Pasquale, Jorgelina & Del Giudice, Teresa & Pauselli, Gregorio & Masi, Margherita & Adinolfi, Felice, 2022. "Precision farming: what do Italian farmers really think? An application of the Q methodology," Agricultural Systems, Elsevier, vol. 201(C).
    10. Hanson, Erik D. & Cossette, Max K. & Roberts, David C., 2022. "The adoption and usage of precision agriculture technologies in North Dakota," Technology in Society, Elsevier, vol. 71(C).
    11. Madhu Khanna, 2021. "Digital Transformation of the Agricultural Sector: Pathways, Drivers and Policy Implications," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(4), pages 1221-1242, December.
    12. DeLay, Nathan & Comstock, Haden, 2021. "Recent Trends in PA Technology Adoption and Bundling in CornProduction: Implications for Farm Consolidation," Western Economics Forum, Western Agricultural Economics Association, vol. 19(2), December.
    13. Silvia Solimene & Daniela Coluccia & Alessandro Bernardo, 2023. "Environmental Impact of Different Business Models: An LCA Study of Fresh Tomato Production in Italy," Sustainability, MDPI, vol. 15(13), pages 1-17, June.
    14. Monteiro Moretti, Débora & Baum, Chad M. & Ehlers, Melf-Hinrich & Finger, Robert & Bröring, Stefanie, 2023. "Exploring actors' perceptions of the precision agriculture innovation system – A Group Concept Mapping approach in Germany and Switzerland," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    15. LoPiccalo, Katherine, 2022. "Impact of broadband penetration on U.S. Farm productivity: A panel approach," Telecommunications Policy, Elsevier, vol. 46(9).
    16. Larson, James A. & Roberts, Roland K. & English, Burton C. & Larkin, Sherry L. & Marra, Michele C. & Martin, Steven W. & Paxton, Kenneth W. & Reeves, Jeanne M., 2007. "Factors Influencing Adoption of Remotely Sensed Imagery for Site-Specific Management in Cotton Production," 2007 Annual Meeting, February 4-7, 2007, Mobile, Alabama 34971, Southern Agricultural Economics Association.
    17. Julian M. Alston & Philip G. Pardey, 2020. "Innovation, Growth, and Structural Change in American Agriculture," NBER Chapters, in: The Role of Innovation and Entrepreneurship in Economic Growth, pages 123-165, National Bureau of Economic Research, Inc.
    18. Shang, Linmei & Heckelei, Thomas & Gerullis, Maria K. & Börner, Jan & Rasch, Sebastian, 2021. "Adoption and diffusion of digital farming technologies - integrating farm-level evidence and system interaction," Agricultural Systems, Elsevier, vol. 190(C).
    19. Madhu Khanna & Shady S. Atallah & Saurajyoti Kar & Bijay Sharma & Linghui Wu & Chengzheng Yu & Girish Chowdhary & Chinmay Soman & Kaiyu Guan, 2022. "Digital transformation for a sustainable agriculture in the United States: Opportunities and challenges," Agricultural Economics, International Association of Agricultural Economists, vol. 53(6), pages 924-937, November.
    20. Kolady, Deepthi E. & Van Der Sluis, Evert, 2021. "Adoption Determinants of Precision Agriculture Technologies and Conservation Agriculture: Evidence from South Dakota," Western Economics Forum, Western Agricultural Economics Association, vol. 19(2), December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:11:p:1773-:d:953601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.