IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4763-d609163.html
   My bibliography  Save this article

Analyzing the Trade-Offs between Meeting Biorefinery Production Capacity and Feedstock Supply Cost: A Chance Constrained Approach

Author

Listed:
  • Lixia H. Lambert

    (Department of Agricultural Economics, Oklahoma State University; Stillwater, OK 74078, USA)

  • Eric A. DeVuyst

    (Department of Agricultural Economics, Oklahoma State University; Stillwater, OK 74078, USA)

  • Burton C. English

    (Department of Agricultural and Resource Economics, University of Tennessee, Knoxville, TN 37996, USA)

  • Rodney Holcomb

    (Department of Agricultural Economics and Food & Ag Products Center, Oklahoma State University, Stillwater, OK 74078, USA)

Abstract

Commercial-scale switchgrass production for cellulosic biofuel remains absent in U.S. A well-recognized difficulty is the steady provision of high-quality feedstock to biorefineries. Switchgrass yield is random due to weather and growing conditions, with low yields during establishment years. Meeting biorefinery production capacity requirements 100% of the time or at any other frequency requires contracting sufficient amount of agricultural land areas to produce feedstock. Using chance-constrained programming, the trade-offs between the degree of certainty that refinery demand for feedstock and the cost of contracting production acreage is assessed. Varying the certainty from 60% to 95%, we find the costs of production, logistics and transportation ranged from 27% to 96% of the cost of 100% certainty. Investors and managers need to consider the cost of certainty of biomass acquisition when contracting for production acreage.

Suggested Citation

  • Lixia H. Lambert & Eric A. DeVuyst & Burton C. English & Rodney Holcomb, 2021. "Analyzing the Trade-Offs between Meeting Biorefinery Production Capacity and Feedstock Supply Cost: A Chance Constrained Approach," Energies, MDPI, vol. 14(16), pages 1-13, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4763-:d:609163
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4763/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4763/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Doye, Damona G. & Brorsen, B. Wade, 2011. "Pasture Land Values: A "Green Acres" Effect?," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 26(2), pages 1-7.
    2. Sun, Yufei & Aw, Grace & Loxton, Ryan & Teo, Kok Lay, 2017. "Chance-constrained optimization for pension fund portfolios in the presence of default risk," European Journal of Operational Research, Elsevier, vol. 256(1), pages 205-214.
    3. Awudu, Iddrisu & Zhang, Jun, 2012. "Uncertainties and sustainability concepts in biofuel supply chain management: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1359-1368.
    4. Larson, James A. & English, Burton C. & He, Lixia, 2008. "Economic Analysis of Farm-Level Supply of Biomass Feedstocks for Energy Production Under Alternative Contract Scenarios and Risk," Integration of Agricultural and Energy Systems Conference, February 12-13, 2008, Atlanta, Georgia 48706, Farm Foundation.
    5. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Lin, Q.G. & Tan, Q., 2009. "Community-scale renewable energy systems planning under uncertainty--An interval chance-constrained programming approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 721-735, May.
    6. Zhu, Minkang & Taylor, Daniel B. & Sarin, Subhash C. & Kramer, Randall A., 1994. "Chance Constrained Programming Models For Risk-Based Economic And Policy Analysis Of Soil Conservation," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 23(1), pages 1-8, April.
    7. Andrew J. Hogan & James G. Morris & Howard E. Thompson, 1981. "Decision Problems Under Risk and Chance Constrained Programming: Dilemmas in the Transition," Management Science, INFORMS, vol. 27(6), pages 698-716, June.
    8. Zhang, Jun & Osmani, Atif & Awudu, Iddrisu & Gonela, Vinay, 2013. "An integrated optimization model for switchgrass-based bioethanol supply chain," Applied Energy, Elsevier, vol. 102(C), pages 1205-1217.
    9. De Meyer, Annelies & Cattrysse, Dirk & Rasinmäki, Jussi & Van Orshoven, Jos, 2014. "Methods to optimise the design and management of biomass-for-bioenergy supply chains: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 657-670.
    10. A. Charnes & W. W. Cooper, 1963. "Deterministic Equivalents for Optimizing and Satisficing under Chance Constraints," Operations Research, INFORMS, vol. 11(1), pages 18-39, February.
    11. Sharma, Bijay P. & Yu, T. Edward & English, Burton C. & Boyer, Christopher N. & Larson, James A., 2020. "Impact of government subsidies on a cellulosic biofuel sector with diverse risk preferences toward feedstock uncertainty," Energy Policy, Elsevier, vol. 146(C).
    12. Osmani, Atif & Zhang, Jun, 2013. "Stochastic optimization of a multi-feedstock lignocellulosic-based bioethanol supply chain under multiple uncertainties," Energy, Elsevier, vol. 59(C), pages 157-172.
    13. Robert F. Nau, 1987. "Note---Blau's Dilemma Revisited," Management Science, INFORMS, vol. 33(10), pages 1232-1237, October.
    14. Wu, C.B. & Huang, G.H. & Li, W. & Xie, Y.L. & Xu, Y., 2015. "Multistage stochastic inexact chance-constraint programming for an integrated biomass-municipal solid waste power supply management under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1244-1254.
    15. Carriquiry, Miguel A. & Du, Xiaodong & Timilsina, Govinda R., 2011. "Second generation biofuels: Economics and policies," Energy Policy, Elsevier, vol. 39(7), pages 4222-4234, July.
    16. Epplin, Francis M. & Haque, Mohua, 2011. "Policies to Facilitate Conversion of Millions of Acres to the Production of Biofuel Feedstock," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 43(3), pages 1-14, August.
    17. Naik, S.N. & Goud, Vaibhav V. & Rout, Prasant K. & Dalai, Ajay K., 2010. "Production of first and second generation biofuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 578-597, February.
    18. Roni, Mohammad S. & Thompson, David N. & Hartley, Damon S., 2019. "Distributed biomass supply chain cost optimization to evaluate multiple feedstocks for a biorefinery," Applied Energy, Elsevier, vol. 254(C).
    19. Yongxi (Eric) Huang & Yueyue Fan & Chien-Wei Chen, 2014. "An Integrated Biofuel Supply Chain to Cope with Feedstock Seasonality and Uncertainty," Transportation Science, INFORMS, vol. 48(4), pages 540-554, November.
    20. Abdulla B. Danok & Bruce A. McCarl & T. Kelley White, 1980. "Machinery Selection Modeling: Incorporation of Weather Variability," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 62(4), pages 700-708.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    2. Haji Esmaeili, Seyed Ali & Szmerekovsky, Joseph & Sobhani, Ahmad & Dybing, Alan & Peterson, Tim O., 2020. "Sustainable biomass supply chain network design with biomass switching incentives for first-generation bioethanol producers," Energy Policy, Elsevier, vol. 138(C).
    3. Fattahi, Mohammad & Govindan, Kannan, 2018. "A multi-stage stochastic program for the sustainable design of biofuel supply chain networks under biomass supply uncertainty and disruption risk: A real-life case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 534-567.
    4. Sharma, Bijay P. & Yu, T. Edward & English, Burton C. & Boyer, Christopher N. & Larson, James A., 2020. "Impact of government subsidies on a cellulosic biofuel sector with diverse risk preferences toward feedstock uncertainty," Energy Policy, Elsevier, vol. 146(C).
    5. Gilani, H. & Sahebi, H. & Oliveira, Fabricio, 2020. "Sustainable sugarcane-to-bioethanol supply chain network design: A robust possibilistic programming model," Applied Energy, Elsevier, vol. 278(C).
    6. Osmani, Atif & Zhang, Jun, 2014. "Economic and environmental optimization of a large scale sustainable dual feedstock lignocellulosic-based bioethanol supply chain in a stochastic environment," Applied Energy, Elsevier, vol. 114(C), pages 572-587.
    7. Bairamzadeh, Samira & Saidi-Mehrabad, Mohammad & Pishvaee, Mir Saman, 2018. "Modelling different types of uncertainty in biofuel supply network design and planning: A robust optimization approach," Renewable Energy, Elsevier, vol. 116(PA), pages 500-517.
    8. Halit Üster & Gökhan Memişoğlu, 2018. "Biomass Logistics Network Design Under Price-Based Supply and Yield Uncertainty," Transportation Science, INFORMS, vol. 52(2), pages 474-492, March.
    9. Robert F. Bordley & Stephen M. Pollock, 2009. "A Decision-Analytic Approach to Reliability-Based Design Optimization," Operations Research, INFORMS, vol. 57(5), pages 1262-1270, October.
    10. Mayerle, Sérgio Fernando & Neiva de Figueiredo, João, 2016. "Designing optimal supply chains for anaerobic bio-digestion/energy generation complexes with distributed small farm feedstock sourcing," Renewable Energy, Elsevier, vol. 90(C), pages 46-54.
    11. Babazadeh, Reza & Razmi, Jafar & Pishvaee, Mir Saman & Rabbani, Masoud, 2017. "A sustainable second-generation biodiesel supply chain network design problem under risk," Omega, Elsevier, vol. 66(PB), pages 258-277.
    12. Jensen, Ida Græsted & Münster, Marie & Pisinger, David, 2017. "Optimizing the supply chain of biomass and biogas for a single plant considering mass and energy losses," European Journal of Operational Research, Elsevier, vol. 262(2), pages 744-758.
    13. Xie, Fei & Huang, Yongxi, 2018. "A multistage stochastic programming model for a multi-period strategic expansion of biofuel supply chain under evolving uncertainties," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 130-148.
    14. Malladi, Krishna Teja & Sowlati, Taraneh, 2018. "Biomass logistics: A review of important features, optimization modeling and the new trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 587-599.
    15. Ahn, Yu-Chan & Lee, In-Beum & Lee, Kun-Hong & Han, Jee-Hoon, 2015. "Strategic planning design of microalgae biomass-to-biodiesel supply chain network: Multi-period deterministic model," Applied Energy, Elsevier, vol. 154(C), pages 528-542.
    16. Osmani, Atif & Zhang, Jun, 2013. "Stochastic optimization of a multi-feedstock lignocellulosic-based bioethanol supply chain under multiple uncertainties," Energy, Elsevier, vol. 59(C), pages 157-172.
    17. Haji Esmaeili, Seyed Ali & Sobhani, Ahmad & Szmerekovsky, Joseph & Dybing, Alan & Pourhashem, Ghasideh, 2020. "First-generation vs. second-generation: A market incentives analysis for bioethanol supply chains with carbon policies," Applied Energy, Elsevier, vol. 277(C).
    18. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    19. Navas-Anguita, Zaira & García-Gusano, Diego & Iribarren, Diego, 2019. "A review of techno-economic data for road transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 11-26.
    20. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4763-:d:609163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.