IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v154y2015icp528-542.html
   My bibliography  Save this article

Strategic planning design of microalgae biomass-to-biodiesel supply chain network: Multi-period deterministic model

Author

Listed:
  • Ahn, Yu-Chan
  • Lee, In-Beum
  • Lee, Kun-Hong
  • Han, Jee-Hoon

Abstract

Many studies have developed mathematical programming models for optimal design of supply chains for agricultural or lingocellulosic biomass-derived bioethanol production. However, because of the shortcomings of using agricultural (food supply problems) and lingo-cellulosic biomass (low biomass availability and processing yield) as feedstock, use of micro-algal biomass has been considered for use as a feedstock for biodiesel (biofuel). Thus, in this study we developed a deterministic mathematical programming model for strategic planning design of a microalgae biomass-to-biodiesel supply chain network (MBBSCN) from feedstock fields to end users that simultaneously satisfies resource constraints, demand constraints, and technology over a long-term planning horizon.

Suggested Citation

  • Ahn, Yu-Chan & Lee, In-Beum & Lee, Kun-Hong & Han, Jee-Hoon, 2015. "Strategic planning design of microalgae biomass-to-biodiesel supply chain network: Multi-period deterministic model," Applied Energy, Elsevier, vol. 154(C), pages 528-542.
  • Handle: RePEc:eee:appene:v:154:y:2015:i:c:p:528-542
    DOI: 10.1016/j.apenergy.2015.05.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915006649
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.05.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Yongxi & Chen, Chien-Wei & Fan, Yueyue, 2010. "Multistage optimization of the supply chains of biofuels," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(6), pages 820-830, November.
    2. Sandberg, Johan & Larsson, Mikael & Wang, Chuan & Dahl, Jan & Lundgren, Joakim, 2012. "A new optimal solution space based method for increased resolution in energy system optimisation," Applied Energy, Elsevier, vol. 92(C), pages 583-592.
    3. Awudu, Iddrisu & Zhang, Jun, 2012. "Uncertainties and sustainability concepts in biofuel supply chain management: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1359-1368.
    4. De Meyer, Annelies & Cattrysse, Dirk & Rasinmäki, Jussi & Van Orshoven, Jos, 2014. "Methods to optimise the design and management of biomass-for-bioenergy supply chains: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 657-670.
    5. Chae, Song Hwa & Kim, Sang Hun & Yoon, Sung-Geun & Park, Sunwon, 2010. "Optimization of a waste heat utilization network in an eco-industrial park," Applied Energy, Elsevier, vol. 87(6), pages 1978-1988, June.
    6. Marshman, D.J. & Chmelyk, T. & Sidhu, M.S. & Gopaluni, R.B. & Dumont, G.A., 2010. "Energy optimization in a pulp and paper mill cogeneration facility," Applied Energy, Elsevier, vol. 87(11), pages 3514-3525, November.
    7. Brennan, Liam & Owende, Philip, 2010. "Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 557-577, February.
    8. Xu, Ben & Li, Peiwen & Waller, Peter, 2014. "Study of the flow mixing in a novel ARID raceway for algae production," Renewable Energy, Elsevier, vol. 62(C), pages 249-257.
    9. Osmani, Atif & Zhang, Jun, 2013. "Stochastic optimization of a multi-feedstock lignocellulosic-based bioethanol supply chain under multiple uncertainties," Energy, Elsevier, vol. 59(C), pages 157-172.
    10. P Flisberg & M Frisk & M Rönnqvist, 2012. "FuelOpt: a decision support system for forest fuel logistics," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(11), pages 1600-1612, November.
    11. McCollum, David L & Ogden, Joan M, 2006. "Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity," Institute of Transportation Studies, Working Paper Series qt1zg00532, Institute of Transportation Studies, UC Davis.
    12. Gunnarsson, Helene & Ronnqvist, Mikael & Lundgren, Jan T., 2004. "Supply chain modelling of forest fuel," European Journal of Operational Research, Elsevier, vol. 158(1), pages 103-123, October.
    13. Karlsson, Magnus & Mardan, Nawzad, 2013. "Considering start-ups and shutdowns using an optimisation tool – Including a dairy production planning case study," Applied Energy, Elsevier, vol. 107(C), pages 338-349.
    14. Karlsson, Magnus, 2011. "The MIND method: A decision support for optimization of industrial energy systems - Principles and case studies," Applied Energy, Elsevier, vol. 88(3), pages 577-589, March.
    15. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    16. Vuarnoz, D. & Kitanovski, A. & Gonin, C. & Borgeaud, Y. & Delessert, M. & Meinen, M. & Egolf, P.W., 2012. "Quantitative feasibility study of magnetocaloric energy conversion utilizing industrial waste heat," Applied Energy, Elsevier, vol. 100(C), pages 229-237.
    17. Rudberg, Martin & Waldemarsson, Martin & Lidestam, Helene, 2013. "Strategic perspectives on energy management: A case study in the process industry," Applied Energy, Elsevier, vol. 104(C), pages 487-496.
    18. Davis, Ryan & Aden, Andy & Pienkos, Philip T., 2011. "Techno-economic analysis of autotrophic microalgae for fuel production," Applied Energy, Elsevier, vol. 88(10), pages 3524-3531.
    19. Chen, Chien-Wei & Fan, Yueyue, 2012. "Bioethanol supply chain system planning under supply and demand uncertainties," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 150-164.
    20. Han, Jee-Hoon & Ahn, Yu-Chan & Lee, In-Beum, 2012. "A multi-objective optimization model for sustainable electricity generation and CO2 mitigation (EGCM) infrastructure design considering economic profit and financial risk," Applied Energy, Elsevier, vol. 95(C), pages 186-195.
    21. Han, Jee-Hoon & Lee, In-Beum, 2011. "Development of a scalable infrastructure model for planning electricity generation and CO2 mitigation strategies under mandated reduction of GHG emission," Applied Energy, Elsevier, vol. 88(12), pages 5056-5068.
    22. Han, Jee-Hoon & Lee, In-Beum, 2014. "A systematic process integration framework for the optimal design and techno-economic performance analysis of energy supply and CO2 mitigation strategies," Applied Energy, Elsevier, vol. 125(C), pages 136-146.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asadi, Ehsan & Habibi, Farhad & Nickel, Stefan & Sahebi, Hadi, 2018. "A bi-objective stochastic location-inventory-routing model for microalgae-based biofuel supply chain," Applied Energy, Elsevier, vol. 228(C), pages 2235-2261.
    2. Kwon, Oseok & Han, Jeehoon, 2021. "Supply chain management of butyric acid-derived butanol: Stochastic approach," Applied Energy, Elsevier, vol. 297(C).
    3. Gilani, H. & Sahebi, H. & Oliveira, Fabricio, 2020. "Sustainable sugarcane-to-bioethanol supply chain network design: A robust possibilistic programming model," Applied Energy, Elsevier, vol. 278(C).
    4. Kwon, Oseok & Kim, Juyeon & Han, Jeehoon, 2022. "Organic waste derived biodiesel supply chain network: Deterministic multi-period planning model," Applied Energy, Elsevier, vol. 305(C).
    5. Wang, Guotao & Liao, Qi & Wang, Chang & Liang, Yongtu & Zhang, Haoran, 2022. "Multiperiod optimal planning of biofuel refueling stations: A bi-level game-theoretic approach," Renewable Energy, Elsevier, vol. 200(C), pages 1152-1165.
    6. Shahbazbegian, Vahid & Hosseini-Motlagh, Seyyed-Mahdi & Haeri, Abdorrahman, 2020. "Integrated forward/reverse logistics thin-film photovoltaic power plant supply chain network design with uncertain data," Applied Energy, Elsevier, vol. 277(C).
    7. Kwon, Oseok & Han, Jeehoon, 2021. "Waste-to-bioethanol supply chain network: A deterministic model," Applied Energy, Elsevier, vol. 300(C).
    8. Wang, Yu & Ebadian, Mahmood & Sokhansanj, Shahab & Webb, Erin & Lau, Anthony, 2017. "Impact of the biorefinery size on the logistics of corn stover supply – A scenario analysis," Applied Energy, Elsevier, vol. 198(C), pages 360-376.
    9. Akhtari, Shaghaygh & Sowlati, Taraneh & Griess, Verena C., 2018. "Integrated strategic and tactical optimization of forest-based biomass supply chains to consider medium-term supply and demand variations," Applied Energy, Elsevier, vol. 213(C), pages 626-638.
    10. Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Shahbazbegian, Vahid, 2020. "Innovative strategy to design a mixed resilient-sustainable electricity supply chain network under uncertainty," Applied Energy, Elsevier, vol. 280(C).
    11. Hoo Poh Ying & Cassendra Bong Phun Chien & Fan Yee Van, 2020. "Operational Management Implemented in Biofuel Upstream Supply Chain and Downstream International Trading: Current Issues in Southeast Asia," Energies, MDPI, vol. 13(7), pages 1-26, April.
    12. Mohamed Abdul Ghani, N. Muhammad Aslaam & Vogiatzis, Chrysafis & Szmerekovsky, Joseph, 2018. "Biomass feedstock supply chain network design with biomass conversion incentives," Energy Policy, Elsevier, vol. 116(C), pages 39-49.
    13. Yılmaz Balaman, Şebnem & Wright, Daniel G. & Scott, James & Matopoulos, Aristides, 2018. "Network design and technology management for waste to energy production: An integrated optimization framework under the principles of circular economy," Energy, Elsevier, vol. 143(C), pages 911-933.
    14. Ahn, Yuchan & Kim, Junghwan & Kwon, Joseph Sang-Il, 2020. "Optimal design of supply chain network with carbon dioxide injection for enhanced shale gas recovery," Applied Energy, Elsevier, vol. 274(C).
    15. Zhang, Qi & Shi, Zhenzhen & Zhang, Pengfei & Li, Zhichao & Jaberi-Douraki, Majid, 2017. "Predictive temperature modeling and experimental investigation of ultrasonic vibration-assisted pelleting of wheat straw," Applied Energy, Elsevier, vol. 205(C), pages 511-528.
    16. Byun, Jaewon & Han, Jeehoon, 2016. "Process synthesis and analysis for catalytic conversion of lignocellulosic biomass to fuels: Separate conversion of cellulose and hemicellulose using 2-sec-butylphenol (SBP) solvent," Applied Energy, Elsevier, vol. 171(C), pages 483-490.
    17. Han, Seulki & Kim, Jiyong, 2019. "A multi-period MILP model for the investment and design planning of a national-level complex renewable energy supply system," Renewable Energy, Elsevier, vol. 141(C), pages 736-750.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Jee-Hoon & Lee, In-Beum, 2014. "A systematic process integration framework for the optimal design and techno-economic performance analysis of energy supply and CO2 mitigation strategies," Applied Energy, Elsevier, vol. 125(C), pages 136-146.
    2. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    3. De Meyer, Annelies & Cattrysse, Dirk & Rasinmäki, Jussi & Van Orshoven, Jos, 2014. "Methods to optimise the design and management of biomass-for-bioenergy supply chains: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 657-670.
    4. Shabani, Nazanin & Akhtari, Shaghaygh & Sowlati, Taraneh, 2013. "Value chain optimization of forest biomass for bioenergy production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 299-311.
    5. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    6. Babazadeh, Reza, 2017. "Optimal design and planning of biodiesel supply chain considering non-edible feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1089-1100.
    7. Mohseni, Shayan & Pishvaee, Mir Saman & Sahebi, Hadi, 2016. "Robust design and planning of microalgae biomass-to-biodiesel supply chain: A case study in Iran," Energy, Elsevier, vol. 111(C), pages 736-755.
    8. Xie, Fei & Huang, Yongxi, 2018. "A multistage stochastic programming model for a multi-period strategic expansion of biofuel supply chain under evolving uncertainties," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 130-148.
    9. Saghaei, Mahsa & Ghaderi, Hadi & Soleimani, Hamed, 2020. "Design and optimization of biomass electricity supply chain with uncertainty in material quality, availability and market demand," Energy, Elsevier, vol. 197(C).
    10. Shabani, Nazanin & Sowlati, Taraneh & Ouhimmou, Mustapha & Rönnqvist, Mikael, 2014. "Tactical supply chain planning for a forest biomass power plant under supply uncertainty," Energy, Elsevier, vol. 78(C), pages 346-355.
    11. Malladi, Krishna Teja & Sowlati, Taraneh, 2018. "Biomass logistics: A review of important features, optimization modeling and the new trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 587-599.
    12. Bairamzadeh, Samira & Saidi-Mehrabad, Mohammad & Pishvaee, Mir Saman, 2018. "Modelling different types of uncertainty in biofuel supply network design and planning: A robust optimization approach," Renewable Energy, Elsevier, vol. 116(PA), pages 500-517.
    13. Huang, Yongxi & Chen, Yihsu, 2014. "Analysis of an imperfectly competitive cellulosic biofuel supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 1-14.
    14. Fattahi, Mohammad & Govindan, Kannan, 2018. "A multi-stage stochastic program for the sustainable design of biofuel supply chain networks under biomass supply uncertainty and disruption risk: A real-life case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 534-567.
    15. Abasian, Foroogh & Rönnqvist, Mikael & Ouhimmou, Mustapha, 2019. "Forest bioenergy network design under market uncertainty," Energy, Elsevier, vol. 188(C).
    16. De Meyer, Annelies & Cattrysse, Dirk & Van Orshoven, Jos, 2016. "Considering biomass growth and regeneration in the optimisation of biomass supply chains," Renewable Energy, Elsevier, vol. 87(P2), pages 990-1002.
    17. Mafakheri, Fereshteh & Nasiri, Fuzhan, 2014. "Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions," Energy Policy, Elsevier, vol. 67(C), pages 116-126.
    18. Hwangbo, Soonho & Lee, In-Beum & Han, Jeehoon, 2017. "Mathematical model to optimize design of integrated utility supply network and future global hydrogen supply network under demand uncertainty," Applied Energy, Elsevier, vol. 195(C), pages 257-267.
    19. Espinoza Pérez, Andrea Teresa & Camargo, Mauricio & Narváez Rincón, Paulo César & Alfaro Marchant, Miguel, 2017. "Key challenges and requirements for sustainable and industrialized biorefinery supply chain design and management: A bibliographic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 350-359.
    20. Gonela, Vinay & Zhang, Jun & Osmani, Atif & Onyeaghala, Raphael, 2015. "Stochastic optimization of sustainable hybrid generation bioethanol supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 1-28.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:154:y:2015:i:c:p:528-542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.