IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i9p2404-d356768.html
   My bibliography  Save this article

What Does Cost Structure Have to Say about Thermal Plant Energy Efficiency? The Case from Angola

Author

Listed:
  • Abdollah Hadi-Vencheh

    (Department of Mathematics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81595-158, Iran)

  • Peter Wanke

    (COPPEAD Graduate Business School; Federal University of Rio de Janeiro, Rua Paschoal Lemme, Rio de Janeiro 355. 21949-900, Brazil)

  • Ali Jamshidi

    (Department of Mathematics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81595-158, Iran)

Abstract

This paper analyzes the efficiency of thermal power plants in Angola by means of a two-stage Data Envelopment Analysis (DEA) approach. In the first stage, a novel super-efficiency DEA model for undesirable outputs (CO 2 emission levels and discharge of polluted water) is initially used to measure their efficiency levels. Then, in the second stage, relevant cost structure variables frequently used to describe a productive technology are employed as analytical thresholds for assessing energy production performance either in terms of capital or labor-intensity levels. Precisely, bootstrapped regression trees are used to discriminate super-efficiency scores yielding an energy production performance predictive model based on the technology type as proxied by its cost structure and their respective thresholds, since Angolan thermal plants are heterogeneous. Findings suggest that Angolan power plants are old and labor intensive, as some of them date back to the colonial era, and that lack of capital investment should be revised in favor of installing carbon capture devices. The approach developed here consists of a valuable approach for identifying priorities when technologically updating a heterogeneous thermal industry to face pollutant concerns.

Suggested Citation

  • Abdollah Hadi-Vencheh & Peter Wanke & Ali Jamshidi, 2020. "What Does Cost Structure Have to Say about Thermal Plant Energy Efficiency? The Case from Angola," Energies, MDPI, vol. 13(9), pages 1-25, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2404-:d:356768
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/9/2404/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/9/2404/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    2. Emrouznejad, Ali & Yang, Guo-liang, 2018. "A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016," Socio-Economic Planning Sciences, Elsevier, vol. 61(C), pages 4-8.
    3. Elvira Silva & Spiro E. Stefanou, 2007. "Dynamic Efficiency Measurement: Theory and Application," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 89(2), pages 398-419.
    4. Wanke, Peter & Barros, C.P., 2017. "Efficiency thresholds and cost structure in Senegal airports," Journal of Air Transport Management, Elsevier, vol. 58(C), pages 100-112.
    5. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    6. Ghosh, Ranjan & Kathuria, Vinish, 2016. "The effect of regulatory governance on efficiency of thermal power generation in India: A stochastic frontier analysis," Energy Policy, Elsevier, vol. 89(C), pages 11-24.
    7. Yao, Xin & Guo, Chengwen & Shao, Shuai & Jiang, Zhujun, 2016. "Total-factor CO2 emission performance of China’s provincial industrial sector: A meta-frontier non-radial Malmquist index approach," Applied Energy, Elsevier, vol. 184(C), pages 1142-1153.
    8. Fernández, David & Pozo, Carlos & Folgado, Rubén & Jiménez, Laureano & Guillén-Gosálbez, Gonzalo, 2018. "Productivity and energy efficiency assessment of existing industrial gases facilities via data envelopment analysis and the Malmquist index," Applied Energy, Elsevier, vol. 212(C), pages 1563-1577.
    9. Nakano, Makiko & Managi, Shunsuke, 2008. "Regulatory reforms and productivity: An empirical analysis of the Japanese electricity industry," Energy Policy, Elsevier, vol. 36(1), pages 201-209, January.
    10. Wei, Xiao & Zhang, Ning, 2020. "The shadow prices of CO2 and SO2 for Chinese Coal-fired Power Plants: A partial frontier approach," Energy Economics, Elsevier, vol. 85(C).
    11. See, Kok Fong & Coelli, Tim, 2012. "An analysis of factors that influence the technical efficiency of Malaysian thermal power plants," Energy Economics, Elsevier, vol. 34(3), pages 677-685.
    12. Wang, Yi-Shu & Xie, Bai-Chen & Shang, Li-Feng & Li, Wen-Hua, 2013. "Measures to improve the performance of China’s thermal power industry in view of cost efficiency," Applied Energy, Elsevier, vol. 112(C), pages 1078-1086.
    13. Shrivastava, Naveen & Sharma, Seema & Chauhan, Kavita, 2012. "Efficiency assessment and benchmarking of thermal power plants in India," Energy Policy, Elsevier, vol. 40(C), pages 159-176.
    14. Liu, C.H. & Lin, Sue J. & Lewis, Charles, 2010. "Evaluation of thermal power plant operational performance in Taiwan by data envelopment analysis," Energy Policy, Elsevier, vol. 38(2), pages 1049-1058, February.
    15. Jahangoshai Rezaee, Mustafa & Moini, Alireza & Makui, Ahmad, 2012. "Operational and non-operational performance evaluation of thermal power plants in Iran: A game theory approach," Energy, Elsevier, vol. 38(1), pages 96-103.
    16. Lam, Pun-Lee & Shiu, Alice, 2001. "A data envelopment analysis of the efficiency of China's thermal power generation," Utilities Policy, Elsevier, vol. 10(2), pages 75-83, June.
    17. Sarıca, Kemal & Or, Ilhan, 2007. "Efficiency assessment of Turkish power plants using data envelopment analysis," Energy, Elsevier, vol. 32(8), pages 1484-1499.
    18. Eser, Patrick & Singh, Antriksh & Chokani, Ndaona & Abhari, Reza S., 2016. "Effect of increased renewables generation on operation of thermal power plants," Applied Energy, Elsevier, vol. 164(C), pages 723-732.
    19. Sözen, Adnan & Alp, Ihsan & Özdemir, Adnan, 2010. "Assessment of operational and environmental performance of the thermal power plants in Turkey by using data envelopment analysis," Energy Policy, Elsevier, vol. 38(10), pages 6194-6203, October.
    20. Park, Soo-Uk & Lesourd, Jean-Baptiste, 2000. "The efficiency of conventional fuel power plants in South Korea: A comparison of parametric and non-parametric approaches," International Journal of Production Economics, Elsevier, vol. 63(1), pages 59-67, January.
    21. Nemoto, Jiro & Goto, Mika, 1999. "Dynamic data envelopment analysis: modeling intertemporal behavior of a firm in the presence of productive inefficiencies," Economics Letters, Elsevier, vol. 64(1), pages 51-56, July.
    22. Du, Limin & Mao, Jie, 2015. "Estimating the environmental efficiency and marginal CO2 abatement cost of coal-fired power plants in China," Energy Policy, Elsevier, vol. 85(C), pages 347-356.
    23. Thompson, Russell G. & Dharmapala, P. S. & Thrall, Robert M., 1995. "Linked-cone DEA profit ratios and technical efficiency with application to Illinois coal mines," International Journal of Production Economics, Elsevier, vol. 39(1-2), pages 99-115, April.
    24. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "DEA environmental assessment of coal fired power plants: Methodological comparison between radial and non-radial models," Energy Economics, Elsevier, vol. 34(6), pages 1854-1863.
    25. Barros, Carlos Pestana & Peypoch, Nicolas, 2008. "Technical efficiency of thermoelectric power plants," Energy Economics, Elsevier, vol. 30(6), pages 3118-3127, November.
    26. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    27. Barros, Carlos Pestana & Wanke, Peter, 2017. "Efficiency in Angolan thermal power plants: Evidence from cost structure and pollutant emissions," Energy, Elsevier, vol. 130(C), pages 129-143.
    28. Scheel, Holger, 2001. "Undesirable outputs in efficiency valuations," European Journal of Operational Research, Elsevier, vol. 132(2), pages 400-410, July.
    29. Park, K. Sam & Park, Kwangtae, 2009. "Measurement of multiperiod aggregative efficiency," European Journal of Operational Research, Elsevier, vol. 193(2), pages 567-580, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hailiang Huang & Changfeng Shi, 2023. "Analysis of the Path Optimization of the Sustainable Development of Coal-Energy Cities Based on TOPSIS Evaluation Model," Energies, MDPI, vol. 16(2), pages 1-17, January.
    2. Antunes, Jorge Junio Moreira & Neves, Juliana Campos & Elmor, Larissa Rosa Carneiro & Araujo, Michel Fontaine Reis De & Wanke, Peter Fernandes & Tan, Yong, 2023. "A new perspective on the U.S. energy efficiency: The political context," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    3. Wanke, Peter & Araujo, Claudia & Tan, Yong & Antunes, Jorge & Pimenta, Roberto, 2023. "Efficiency in university hospitals: A genetic optimized semi-parametric production function," Operations Research Perspectives, Elsevier, vol. 10(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barros, Carlos Pestana & Wanke, Peter, 2017. "Efficiency in Angolan thermal power plants: Evidence from cost structure and pollutant emissions," Energy, Elsevier, vol. 130(C), pages 129-143.
    2. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    3. Jindal, Abhinav & Nilakantan, Rahul, 2021. "Falling efficiency levels of Indian coal-fired power plants: A slacks-based analysis," Energy Economics, Elsevier, vol. 93(C).
    4. Fallahi, Alireza & Ebrahimi, Reza & Ghaderi, S.F., 2011. "Measuring efficiency and productivity change in power electric generation management companies by using data envelopment analysis: A case study," Energy, Elsevier, vol. 36(11), pages 6398-6405.
    5. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    6. Li, Feng & Zhang, Danlu & Zhang, Jinyu & Kou, Gang, 2022. "Measuring the energy production and utilization efficiency of Chinese thermal power industry with the fixed-sum carbon emission constraint," International Journal of Production Economics, Elsevier, vol. 252(C).
    7. Gharneh, Naser Shams & Nabavieh, Alireza & Gholamiangonabadi, Davoud & Alimoradi, Mohammad, 2014. "Productivity change and its determinants: Application of the Malmquist index with bootstrapping in Iranian steam power plants," Utilities Policy, Elsevier, vol. 31(C), pages 114-120.
    8. Sahoo, Nihar R. & Mohapatra, Pratap K.J. & Sahoo, Biresh K. & Mahanty, Biswajit, 2017. "Rationality of energy efficiency improvement targets under the PAT scheme in India – A case of thermal power plants," Energy Economics, Elsevier, vol. 66(C), pages 279-289.
    9. Ogunrinde, Olawale & Shittu, Ekundayo, 2023. "Efficiency and productivity of renewable energy technologies: Evidence from U.S. investor-owned utilities across regional markets," Utilities Policy, Elsevier, vol. 82(C).
    10. Liu, C.H. & Lin, Sue J. & Lewis, Charles, 2010. "Evaluation of thermal power plant operational performance in Taiwan by data envelopment analysis," Energy Policy, Elsevier, vol. 38(2), pages 1049-1058, February.
    11. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    12. Li, Ming-Jia & Tao, Wen-Quan, 2017. "Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry," Applied Energy, Elsevier, vol. 187(C), pages 203-215.
    13. Hampf, Benjamin, 2017. "Rational inefficiency, adjustment costs and sequential technologies," European Journal of Operational Research, Elsevier, vol. 263(3), pages 1095-1108.
    14. Woo, Chungwon & Chung, Yanghon & Chun, Dongphil & Seo, Hangyeol & Hong, Sungjun, 2015. "The static and dynamic environmental efficiency of renewable energy: A Malmquist index analysis of OECD countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 367-376.
    15. Lynes, Melissa & Featherstone, Allen, 2015. "Economic Efficiency of Utility Plants Under Renewable Energy Policy," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205674, Agricultural and Applied Economics Association.
    16. Chen, Zhongfei & Barros, Carlos Pestana & Borges, Maria Rosa, 2015. "A Bayesian stochastic frontier analysis of Chinese fossil-fuel electricity generation companies," Energy Economics, Elsevier, vol. 48(C), pages 136-144.
    17. Lin, Boqiang & Sai, Rockson, 2021. "A multi factor Malmquist CO2emission performance indices: Evidence from Sub Saharan African public thermal power plants," Energy, Elsevier, vol. 223(C).
    18. Xie, Bai-Chen & Shang, Li-Feng & Yang, Si-Bo & Yi, Bo-Wen, 2014. "Dynamic environmental efficiency evaluation of electric power industries: Evidence from OECD (Organization for Economic Cooperation and Development) and BRIC (Brazil, Russia, India and China) countrie," Energy, Elsevier, vol. 74(C), pages 147-157.
    19. Bi, Gong-Bing & Song, Wen & Zhou, P. & Liang, Liang, 2014. "Does environmental regulation affect energy efficiency in China's thermal power generation? Empirical evidence from a slacks-based DEA model," Energy Policy, Elsevier, vol. 66(C), pages 537-546.
    20. Jahangoshai Rezaee, Mustafa & Moini, Alireza & Makui, Ahmad, 2012. "Operational and non-operational performance evaluation of thermal power plants in Iran: A game theory approach," Energy, Elsevier, vol. 38(1), pages 96-103.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2404-:d:356768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.