IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p1934-d345547.html
   My bibliography  Save this article

Evaluation of Load Matching Indicators in Residential PV Systems-the Case of Cyprus

Author

Listed:
  • Vladimir Z. Gjorgievski

    (Faculty of Electrical Engineering and Information Technologies, University Ss Cyril and Methodius, 1000 Skopje, North Macedonia)

  • Nikolas G. Chatzigeorgiou

    (FOSS Research Centre for Sustainable Energy, PV Technology Laboratory, Department of Electrical and Computer Engineering, University of Cyprus, 1678 Nicosia, Cyprus)

  • Venizelos Venizelou

    (FOSS Research Centre for Sustainable Energy, PV Technology Laboratory, Department of Electrical and Computer Engineering, University of Cyprus, 1678 Nicosia, Cyprus)

  • Georgios C. Christoforidis

    (Department of Electrical and Computer Engineering, University of Western Macedonia, 50100 Kozani, Greece)

  • George E. Georghiou

    (FOSS Research Centre for Sustainable Energy, PV Technology Laboratory, Department of Electrical and Computer Engineering, University of Cyprus, 1678 Nicosia, Cyprus)

  • Grigoris K. Papagiannis

    (School of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

Abstract

Three load matching indicators (self-consumption rate, self-sufficiency rate, loss of load probability) and the CO 2 emissions were evaluated for 55 Cypriot households with 3 kWp rooftop photovoltaic (PV) generators. The calculations were performed using 30-minute generation and consumption data from a large scale smart meter project in Cyprus. To investigate the effects of recent advances in local legislation, an analysis for higher PV capacities (5 kWp and 10 kWp) was also performed. The PV generation profiles for 5 kWp and 10 kWp PVs were obtained by scaling the 3 kWp PV generation profiles. The results showed that the self-consumption of the analyzed households varied seasonally, as it was related to their heating and cooling demand. More interestingly, the ratio between the households’ annual electricity generation and demand, formally defined here as generation-to-demand ratio (GTDR), was found to be related to the value ranges of the studied load matching indicators. Hence, on average, households with 3 kWp PV generators annually self-consumed 48.17% and exported 2,415.10 kWh of their PV generation. On the other hand, households with larger PV generators were characterized by a higher GTDR, but lower load matching capabilities. For the cases of 5 kWp and 10 kWp PV generators, the average self-consumption fell to 34.05% and 19.31%, while the exported PV generation was equal to 5,122.47 kWh, and 12,534.90 kWh, respectively. Along with lower load matching capabilities, households that generated more than they consumed were also found to have a lower potential for CO 2 emissions reduction per installed kWp within the boundaries of the building. In this context, the GTDR could be used by stakeholders to characterize buildings, infer possible value ranges of more complex indicators and make evidence based decisions on policy and legislation.

Suggested Citation

  • Vladimir Z. Gjorgievski & Nikolas G. Chatzigeorgiou & Venizelos Venizelou & Georgios C. Christoforidis & George E. Georghiou & Grigoris K. Papagiannis, 2020. "Evaluation of Load Matching Indicators in Residential PV Systems-the Case of Cyprus," Energies, MDPI, vol. 13(8), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1934-:d:345547
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/1934/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/1934/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. McKenna, Eoghan & Pless, Jacquelyn & Darby, Sarah J., 2018. "Solar photovoltaic self-consumption in the UK residential sector: New estimates from a smart grid demonstration project," Energy Policy, Elsevier, vol. 118(C), pages 482-491.
    2. Wang, Huan & Chen, Wenying & Shi, Jingcheng, 2018. "Low carbon transition of global building sector under 2- and 1.5-degree targets," Applied Energy, Elsevier, vol. 222(C), pages 148-157.
    3. Gautier, Axel & Hoet, Brieuc & Jacqmin, Julien & Van Driessche, Sarah, 2019. "Self-consumption choice of residential PV owners under net-metering," Energy Policy, Elsevier, vol. 128(C), pages 648-653.
    4. Francesco Mancini & Benedetto Nastasi, 2019. "Energy Retrofitting Effects on the Energy Flexibility of Dwellings," Energies, MDPI, vol. 12(14), pages 1-19, July.
    5. Georgios C. Christoforidis & Ioannis P. Panapakidis & Theofilos A. Papadopoulos & Grigoris K. Papagiannis & Ioannis Koumparou & Maria Hadjipanayi & George E. Georghiou, 2016. "A Model for the Assessment of Different Net-Metering Policies," Energies, MDPI, vol. 9(4), pages 1-24, April.
    6. Yu, Hyun Jin Julie, 2018. "A prospective economic assessment of residential PV self-consumption with batteries and its systemic effects: The French case in 2030," Energy Policy, Elsevier, vol. 113(C), pages 673-687.
    7. Roberts, Mike B. & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2019. "Characterisation of Australian apartment electricity demand and its implications for low-carbon cities," Energy, Elsevier, vol. 180(C), pages 242-257.
    8. Luthander, Rasmus & Nilsson, Annica M. & Widén, Joakim & Åberg, Magnus, 2019. "Graphical analysis of photovoltaic generation and load matching in buildings: A novel way of studying self-consumption and self-sufficiency," Applied Energy, Elsevier, vol. 250(C), pages 748-759.
    9. Robert L. Fares & Michael E. Webber, 2017. "The impacts of storing solar energy in the home to reduce reliance on the utility," Nature Energy, Nature, vol. 2(2), pages 1-10, February.
    10. Riyad Mubarak & Eduardo Weide Luiz & Gunther Seckmeyer, 2019. "Why PV Modules Should Preferably No Longer Be Oriented to the South in the Near Future," Energies, MDPI, vol. 12(23), pages 1-16, November.
    11. Venizelou, Venizelos & Philippou, Nikolas & Hadjipanayi, Maria & Makrides, George & Efthymiou, Venizelos & Georghiou, George E., 2018. "Development of a novel time-of-use tariff algorithm for residential prosumer price-based demand side management," Energy, Elsevier, vol. 142(C), pages 633-646.
    12. Bertsch, Valentin & Geldermann, Jutta & Lühn, Tobias, 2017. "What drives the profitability of household PV investments, self-consumption and self-sufficiency?," Applied Energy, Elsevier, vol. 204(C), pages 1-15.
    13. Luthander, Rasmus & Widén, Joakim & Nilsson, Daniel & Palm, Jenny, 2015. "Photovoltaic self-consumption in buildings: A review," Applied Energy, Elsevier, vol. 142(C), pages 80-94.
    14. Speirs, Jamie & Contestabile, Marcello & Houari, Yassine & Gross, Robert, 2014. "The future of lithium availability for electric vehicle batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 183-193.
    15. Bódis, Katalin & Kougias, Ioannis & Jäger-Waldau, Arnulf & Taylor, Nigel & Szabó, Sándor, 2019. "A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    16. Salpakari, Jyri & Lund, Peter, 2016. "Optimal and rule-based control strategies for energy flexibility in buildings with PV," Applied Energy, Elsevier, vol. 161(C), pages 425-436.
    17. Venizelou, Venizelos & Makrides, George & Efthymiou, Venizelos & Georghiou, George E., 2020. "Methodology for deploying cost-optimum price-based demand side management for residential prosumers," Renewable Energy, Elsevier, vol. 153(C), pages 228-240.
    18. Luthander, Rasmus & Widén, Joakim & Munkhammar, Joakim & Lingfors, David, 2016. "Self-consumption enhancement and peak shaving of residential photovoltaics using storage and curtailment," Energy, Elsevier, vol. 112(C), pages 221-231.
    19. Nousdilis, Angelos I. & Christoforidis, Georgios C. & Papagiannis, Grigoris K., 2018. "Active power management in low voltage networks with high photovoltaics penetration based on prosumers’ self-consumption," Applied Energy, Elsevier, vol. 229(C), pages 614-624.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gjorgievski, Vladimir Z. & Cundeva, Snezana & Georghiou, George E., 2021. "Social arrangements, technical designs and impacts of energy communities: A review," Renewable Energy, Elsevier, vol. 169(C), pages 1138-1156.
    2. Haleh Moghaddasi & Charles Culp & Jorge Vanegas, 2021. "Net Zero Energy Communities: Integrated Power System, Building and Transport Sectors," Energies, MDPI, vol. 14(21), pages 1-33, October.
    3. Arsalis, Alexandros & Papanastasiou, Panos & Georghiou, George E., 2022. "A comparative review of lithium-ion battery and regenerative hydrogen fuel cell technologies for integration with photovoltaic applications," Renewable Energy, Elsevier, vol. 191(C), pages 943-960.
    4. Venizelos Efthymiou & Christina N. Papadimitriou, 2022. "Smart Photovoltaic Energy Systems for a Sustainable Future," Energies, MDPI, vol. 15(18), pages 1-3, September.
    5. Sofiane Kichou & Nikolaos Skandalos & Petr Wolf, 2020. "Evaluation of Photovoltaic and Battery Storage Effects on the Load Matching Indicators Based on Real Monitored Data," Energies, MDPI, vol. 13(11), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claudia Gunther & Wolf-Peter Schill & Alexander Zerrahn, 2019. "Prosumage of solar electricity: tariff design, capacity investments, and power system effects," Papers 1907.09855, arXiv.org.
    2. Günther, Claudia & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Prosumage of solar electricity: Tariff design, capacity investments, and power sector effects," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 152.
    3. Roberts, Mike B. & Bruce, Anna & MacGill, Iain, 2019. "Impact of shared battery energy storage systems on photovoltaic self-consumption and electricity bills in apartment buildings," Applied Energy, Elsevier, vol. 245(C), pages 78-95.
    4. O'Shaughnessy, Eric & Cutler, Dylan & Ardani, Kristen & Margolis, Robert, 2018. "Solar plus: A review of the end-user economics of solar PV integration with storage and load control in residential buildings," Applied Energy, Elsevier, vol. 228(C), pages 2165-2175.
    5. Fachrizal, Reza & Shepero, Mahmoud & Åberg, Magnus & Munkhammar, Joakim, 2022. "Optimal PV-EV sizing at solar powered workplace charging stations with smart charging schemes considering self-consumption and self-sufficiency balance," Applied Energy, Elsevier, vol. 307(C).
    6. Juan Pablo Fernández Goycoolea & Gabriela Zapata-Lancaster & Christopher Whitman, 2022. "Operational Emissions in Prosuming Dwellings: A Study Comparing Different Sources of Grid CO 2 Intensity Values in South Wales, UK," Energies, MDPI, vol. 15(7), pages 1-24, March.
    7. Jouttijärvi, Sami & Lobaccaro, Gabriele & Kamppinen, Aleksi & Miettunen, Kati, 2022. "Benefits of bifacial solar cells combined with low voltage power grids at high latitudes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    8. Gautier, Axel & Jacqmin, Julien & Poudou, Jean-Christophe, 2021. "Optimal grid tariffs with heterogeneous prosumers," Utilities Policy, Elsevier, vol. 68(C).
    9. Joshua M. Pearce & Nelson Sommerfeldt, 2021. "Economics of Grid-Tied Solar Photovoltaic Systems Coupled to Heat Pumps: The Case of Northern Climates of the U.S. and Canada," Energies, MDPI, vol. 14(4), pages 1-17, February.
    10. Gallego-Castillo, Cristobal & Heleno, Miguel & Victoria, Marta, 2021. "Self-consumption for energy communities in Spain: A regional analysis under the new legal framework," Energy Policy, Elsevier, vol. 150(C).
    11. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe, 2020. "The post COVID-19 green recovery in practice: Assessing the profitability of a policy proposal on residential photovoltaic plants," Energy Policy, Elsevier, vol. 147(C).
    12. Alaa A. F. Husain & Maryam Huda Ahmad Phesal & Mohd Zainal Abidin Ab Kadir & Ungku Anisa Ungku Amirulddin & Abdulhadi H. J. Junaidi, 2021. "A Decade of Transitioning Malaysia toward a High-Solar PV Energy Penetration Nation," Sustainability, MDPI, vol. 13(17), pages 1-16, September.
    13. Bruno Domenech & Gema Calleja & Jordi Olivella, 2021. "Residential Photovoltaic Profitability with Storage under the New Spanish Regulation: A Multi-Scenario Analysis," Energies, MDPI, vol. 14(7), pages 1-17, April.
    14. Luo, Shunjun & Zhang, Shaohui, 2022. "How R&D expenditure intermediate as a new determinants for low carbon energy transition in Belt and Road Initiative economies," Renewable Energy, Elsevier, vol. 197(C), pages 101-109.
    15. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe, 2022. "The impact of a subsidized tax deduction on residential solar photovoltaic-battery energy storage systems," Utilities Policy, Elsevier, vol. 75(C).
    16. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    17. Barbour, Edward & González, Marta C., 2018. "Projecting battery adoption in the prosumer era," Applied Energy, Elsevier, vol. 215(C), pages 356-370.
    18. Moiz Masood Syed & Gregory M. Morrison & James Darbyshire, 2020. "Shared Solar and Battery Storage Configuration Effectiveness for Reducing the Grid Reliance of Apartment Complexes," Energies, MDPI, vol. 13(18), pages 1-23, September.
    19. Liu, Xuezhi & Yan, Zheng & Wu, Jianzhong, 2019. "Optimal coordinated operation of a multi-energy community considering interactions between energy storage and conversion devices," Applied Energy, Elsevier, vol. 248(C), pages 256-273.
    20. Muñoz-Rodríguez, Francisco José & Jiménez-Castillo, Gabino & de la Casa Hernández, Jesús & Aguilar Peña, Juan Domingo, 2021. "A new tool to analysing photovoltaic self-consumption systems with batteries," Renewable Energy, Elsevier, vol. 168(C), pages 1327-1343.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1934-:d:345547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.