IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7065-d667274.html
   My bibliography  Save this article

Net Zero Energy Communities: Integrated Power System, Building and Transport Sectors

Author

Listed:
  • Haleh Moghaddasi

    (Department of Architecture, Texas A&M University, College Station, TX 77843, USA)

  • Charles Culp

    (Department of Architecture, Texas A&M University, College Station, TX 77843, USA)

  • Jorge Vanegas

    (Department of Architecture, Texas A&M University, College Station, TX 77843, USA)

Abstract

A Net Zero Community (NZC) concept and its energy characteristics are presented in this paper. NZC is an emerging topic with multiple variations in terms of scope and calculated methods, which complicates quantifying its performance. This paper covers three key barriers in achieving NZC targets: (1) the main focus of current definitions on buildings, disregarding community power systems and energy use in transportation; (2) different requirements (source, supply, metrics, etc.) in the existing definitions; and (3) lack of updated published reports to track the progress of committed NZC targets. The importance of this research is summarized as due to increased savings in primary energy and greenhouse gas emissions related to the three main energy sectors, namely power systems, buildings, and transportation (PBT). To clarify the current NZC, this paper reviews: (1) variations in the existing definitions and criteria from peer-reviewed publications; (2) the latest climate projection models by policymakers to achieve net zero by 2050; (3) the literature on renewable-based power systems; and (4) three planned NZC cases in international locations, in order to study their NZC targets, energy performance, and challenges. The outcome highlights NZC design guidelines, including energy efficiency measures, electrification, and renewables in PBT sectors that help stakeholders including policymakers, developers, designers, and engineers speed up achievement of NZC targets.

Suggested Citation

  • Haleh Moghaddasi & Charles Culp & Jorge Vanegas, 2021. "Net Zero Energy Communities: Integrated Power System, Building and Transport Sectors," Energies, MDPI, vol. 14(21), pages 1-33, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7065-:d:667274
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7065/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7065/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gaiser, Kyle & Stroeve, Pieter, 2014. "The impact of scheduling appliances and rate structure on bill savings for net-zero energy communities: Application to West Village," Applied Energy, Elsevier, vol. 113(C), pages 1586-1595.
    2. Sharma, Atul, 2011. "A comprehensive study of solar power in India and World," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1767-1776, May.
    3. Miranda A. Schreurs, 2016. "The Paris Climate Agreement and the Three Largest Emitters: China, the United States, and the European Union," Politics and Governance, Cogitatio Press, vol. 4(3), pages 219-223.
    4. Pablo-Romero, María del P. & Pozo-Barajas, Rafael & Yñiguez, Rocío, 2017. "Global changes in residential energy consumption," Energy Policy, Elsevier, vol. 101(C), pages 342-352.
    5. Malte Meinshausen & S. Smith & K. Calvin & J. Daniel & M. Kainuma & J-F. Lamarque & K. Matsumoto & S. Montzka & S. Raper & K. Riahi & A. Thomson & G. Velders & D.P. Vuuren, 2011. "The RCP greenhouse gas concentrations and their extensions from 1765 to 2300," Climatic Change, Springer, vol. 109(1), pages 213-241, November.
    6. Ravindra, Kumudhini & Iyer, Parameshwar P., 2014. "Decentralized demand–supply matching using community microgrids and consumer demand response: A scenario analysis," Energy, Elsevier, vol. 76(C), pages 32-41.
    7. Joeri Rogelj & Michel den Elzen & Niklas Höhne & Taryn Fransen & Hanna Fekete & Harald Winkler & Roberto Schaeffer & Fu Sha & Keywan Riahi & Malte Meinshausen, 2016. "Paris Agreement climate proposals need a boost to keep warming well below 2 °C," Nature, Nature, vol. 534(7609), pages 631-639, June.
    8. Gvozdenac, Dušan & Urošević, Branka Gvozdenac & Menke, Christoph & Urošević, Dragan & Bangviwat, Athikom, 2017. "High efficiency cogeneration: CHP and non-CHP energy," Energy, Elsevier, vol. 135(C), pages 269-278.
    9. Haleh Moghaddasi & Charles Culp & Jorge Vanegas & Mehrdad Ehsani, 2021. "Net Zero Energy Buildings: Variations, Clarifications, and Requirements in Response to the Paris Agreement," Energies, MDPI, vol. 14(13), pages 1-21, June.
    10. Potrč, Sanja & Čuček, Lidija & Martin, Mariano & Kravanja, Zdravko, 2021. "Sustainable renewable energy supply networks optimization – The gradual transition to a renewable energy system within the European Union by 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    11. Kim, Min-Hwi & Kim, Deukwon & Heo, Jaehyeok & Lee, Dong-Won, 2019. "Techno-economic analysis of hybrid renewable energy system with solar district heating for net zero energy community," Energy, Elsevier, vol. 187(C).
    12. Vladimir Z. Gjorgievski & Nikolas G. Chatzigeorgiou & Venizelos Venizelou & Georgios C. Christoforidis & George E. Georghiou & Grigoris K. Papagiannis, 2020. "Evaluation of Load Matching Indicators in Residential PV Systems-the Case of Cyprus," Energies, MDPI, vol. 13(8), pages 1-18, April.
    13. Vera, Ivan & Langlois, Lucille, 2007. "Energy indicators for sustainable development," Energy, Elsevier, vol. 32(6), pages 875-882.
    14. Parra, David & Norman, Stuart A. & Walker, Gavin S. & Gillott, Mark, 2016. "Optimum community energy storage system for demand load shifting," Applied Energy, Elsevier, vol. 174(C), pages 130-143.
    15. Neves, Diana & Silva, Carlos A. & Connors, Stephen, 2014. "Design and implementation of hybrid renewable energy systems on micro-communities: A review on case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 935-946.
    16. Kennedy, Scott & Sgouridis, Sgouris, 2011. "Rigorous classification and carbon accounting principles for low and Zero Carbon Cities," Energy Policy, Elsevier, vol. 39(9), pages 5259-5268, September.
    17. Hernandez, R.R. & Easter, S.B. & Murphy-Mariscal, M.L. & Maestre, F.T. & Tavassoli, M. & Allen, E.B. & Barrows, C.W. & Belnap, J. & Ochoa-Hueso, R. & Ravi, S. & Allen, M.F., 2014. "Environmental impacts of utility-scale solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 766-779.
    18. Malte Meinshausen & Nicolai Meinshausen & William Hare & Sarah C. B. Raper & Katja Frieler & Reto Knutti & David J. Frame & Myles R. Allen, 2009. "Greenhouse-gas emission targets for limiting global warming to 2 °C," Nature, Nature, vol. 458(7242), pages 1158-1162, April.
    19. Chen, Yixing & Hong, Tianzhen & Piette, Mary Ann, 2017. "Automatic generation and simulation of urban building energy models based on city datasets for city-scale building retrofit analysis," Applied Energy, Elsevier, vol. 205(C), pages 323-335.
    20. Zhang, Da & Chai, Qimin & Zhang, Xiliang & He, Jiankun & Yue, Li & Dong, Xiufen & Wu, Shu, 2012. "Economical assessment of large-scale photovoltaic power development in China," Energy, Elsevier, vol. 40(1), pages 370-375.
    21. Nejat, Payam & Jomehzadeh, Fatemeh & Taheri, Mohammad Mahdi & Gohari, Mohammad & Abd. Majid, Muhd Zaimi, 2015. "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 843-862.
    22. Leibowicz, Benjamin D. & Lanham, Christopher M. & Brozynski, Max T. & Vázquez-Canteli, José R. & Castejón, Nicolás Castillo & Nagy, Zoltan, 2018. "Optimal decarbonization pathways for urban residential building energy services," Applied Energy, Elsevier, vol. 230(C), pages 1311-1325.
    23. Parra, David & Swierczynski, Maciej & Stroe, Daniel I. & Norman, Stuart.A. & Abdon, Andreas & Worlitschek, Jörg & O’Doherty, Travis & Rodrigues, Lucelia & Gillott, Mark & Zhang, Xiaojin & Bauer, Chris, 2017. "An interdisciplinary review of energy storage for communities: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 730-749.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehreen Saleem Gul & Hassam Nasarullah Chaudhry, 2022. "Energy Efficiency, Low Carbon Resources and Renewable Technology," Energies, MDPI, vol. 15(13), pages 1-3, June.
    2. Łukasz Mazur & Sławomir Cieślik & Stanislaw Czapp, 2023. "Trends in Locally Balanced Energy Systems without the Use of Fossil Fuels: A Review," Energies, MDPI, vol. 16(12), pages 1-31, June.
    3. Haleh Moghaddasi & Charles Culp & Jorge Vanegas & Saptarshi Das & Mehrdad Ehsani, 2022. "An Adaptable Net Zero Model: Energy Analysis of a Monitored Case Study," Energies, MDPI, vol. 15(11), pages 1-24, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zwickl-Bernhard, Sebastian & Auer, Hans, 2022. "Demystifying natural gas distribution grid decommissioning: An open-source approach to local deep decarbonization of urban neighborhoods," Energy, Elsevier, vol. 238(PB).
    2. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Optimal energy management in all-electric residential energy systems with heat and electricity storage," Applied Energy, Elsevier, vol. 254(C).
    3. Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
    4. Haleh Moghaddasi & Charles Culp & Jorge Vanegas & Saptarshi Das & Mehrdad Ehsani, 2022. "An Adaptable Net Zero Model: Energy Analysis of a Monitored Case Study," Energies, MDPI, vol. 15(11), pages 1-24, May.
    5. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    6. Punia Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2016. "Recognition and prioritization of challenges in growth of solar energy using analytical hierarchy process: Indian outlook," Energy, Elsevier, vol. 100(C), pages 332-348.
    7. Xingyun Yan & Lingyu Wang & Mingzhu Fang & Jie Hu, 2022. "How Can Industrial Parks Achieve Carbon Neutrality? Literature Review and Research Prospect Based on the CiteSpace Knowledge Map," Sustainability, MDPI, vol. 15(1), pages 1-29, December.
    8. Villa-Arrieta, Manuel & Sumper, Andreas, 2019. "Economic evaluation of Nearly Zero Energy Cities," Applied Energy, Elsevier, vol. 237(C), pages 404-416.
    9. Govind Joshi & Salman Mohagheghi, 2021. "Optimal Operation of Combined Energy and Water Systems for Community Resilience against Natural Disasters," Energies, MDPI, vol. 14(19), pages 1-19, September.
    10. Haleh Moghaddasi & Charles Culp & Jorge Vanegas & Mehrdad Ehsani, 2021. "Net Zero Energy Buildings: Variations, Clarifications, and Requirements in Response to the Paris Agreement," Energies, MDPI, vol. 14(13), pages 1-21, June.
    11. Quddus Tushar & Guomin Zhang & Satheeskumar Navaratnam & Muhammed A. Bhuiyan & Lei Hou & Filippo Giustozzi, 2023. "A Review of Evaluative Measures of Carbon-Neutral Buildings: The Bibliometric and Science Mapping Analysis towards Sustainability," Sustainability, MDPI, vol. 15(20), pages 1-31, October.
    12. Tori, Felipe & Bustamante, Waldo & Vera, Sergio, 2022. "Analysis of Net Zero Energy Buildings public policies at the residential building sector: A comparison between Chile and selected countries," Energy Policy, Elsevier, vol. 161(C).
    13. Ajay Gambhir & Laurent Drouet & David McCollum & Tamaryn Napp & Dan Bernie & Adam Hawkes & Oliver Fricko & Petr Havlik & Keywan Riahi & Valentina Bosetti & Jason Lowe, 2017. "Assessing the Feasibility of Global Long-Term Mitigation Scenarios," Energies, MDPI, vol. 10(1), pages 1-31, January.
    14. Nihit Goyal, 2021. "Limited Demand or Unreliable Supply? A Bibliometric Review and Computational Text Analysis of Research on Energy Policy in India," Sustainability, MDPI, vol. 13(23), pages 1-23, December.
    15. Gjorgievski, Vladimir Z. & Cundeva, Snezana & Georghiou, George E., 2021. "Social arrangements, technical designs and impacts of energy communities: A review," Renewable Energy, Elsevier, vol. 169(C), pages 1138-1156.
    16. Seddiki, Mohammed & Bennadji, Amar, 2019. "Multi-criteria evaluation of renewable energy alternatives for electricity generation in a residential building," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 101-117.
    17. Ajay Gambhir & Tamaryn Napp & Adam Hawkes & Lena Höglund-Isaksson & Wilfried Winiwarter & Pallav Purohit & Fabian Wagner & Dan Bernie & Jason Lowe, 2017. "The Contribution of Non-CO 2 Greenhouse Gas Mitigation to Achieving Long-Term Temperature Goals," Energies, MDPI, vol. 10(5), pages 1-23, May.
    18. Roncoroni, Alan & Battiston, Stefano & Escobar-Farfán, Luis O.L. & Martinez-Jaramillo, Serafin, 2021. "Climate risk and financial stability in the network of banks and investment funds," Journal of Financial Stability, Elsevier, vol. 54(C).
    19. Jia, Teng & Dai, Yanjun & Wang, Ruzhu, 2018. "Refining energy sources in winemaking industry by using solar energy as alternatives for fossil fuels: A review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 278-296.
    20. Daniel Efurosibina Attoye & Timothy O. Adekunle & Kheira Anissa Tabet Aoul & Ahmed Hassan & Samuel Osekafore Attoye, 2018. "A Conceptual Framework for a Building Integrated Photovoltaics (BIPV) Educative-Communication Approach," Sustainability, MDPI, vol. 10(10), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7065-:d:667274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.