IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6643-d463125.html
   My bibliography  Save this article

Studying the Level of Sustainable Energy Development of the European Union Countries and Their Similarity Based on the Economic and Demographic Potential

Author

Listed:
  • Magdalena Tutak

    (Faculty of Mining, Safety Engineering and Industrial Automation, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Jarosław Brodny

    (Faculty of Organization and Management, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Dominika Siwiec

    (Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszów, Poland)

  • Robert Ulewicz

    (Department of Production Engineering and Safety, Faculty of Management, Czestochowa University of Technology, 42-201 Częstochowa, Poland)

  • Peter Bindzár

    (Institute of Logistics and Transportation, Technical University of Košice, 042 00 Košice, Slovakia)

Abstract

The concept of sustainable economic development takes into account economic, social and environmental aspects and strives to achieve balance between them. One of the basic areas where it is required to revalue the current views on sustainable development is energy. The growing public awareness of environmental protection forces changes in this industry. Despite the global nature of this problem, its solution is perceived differently in various regions of the world. The unquestionable leader in introducing the idea of sustainable development economy is the European Union, where the energy sector is of key importance for the effectiveness of this process. In order to assess the sustainable energy development of the European Union countries, studies were conducted based on 13 selected indicators characterizing this sector in terms of energy, economy and environment. In order to assess the specificity of the European Union countries, these indicators were additionally compared to the gross domestic product value and the number of inhabitants of individual countries. For these cases, multi-criteria analyses were carried out using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method. It allowed the authors to rank the European Union countries in terms of their adaptation to a sustainable energy economy. Based on the determined values of indicators versus the gross domestic product and the number of inhabitants of the countries in question, these countries were also divided into similar groups with the use of the Kohonen artificial neural networks. These groups can pursue a common energy policy in the field of sustainable development. The aim of the research was to present a new approach to the assessment of sustainable energy development of the European Union countries. The extensive ratio analysis (13 indicators of the sustainable energy development), including the economic and demographic potential of individual countries, and the use of modern tools made it possible to acquire new knowledge in the field of sustainable energy development in the European Union countries. The results should be utilized for more effective sustainable energy development of the European Union countries.

Suggested Citation

  • Magdalena Tutak & Jarosław Brodny & Dominika Siwiec & Robert Ulewicz & Peter Bindzár, 2020. "Studying the Level of Sustainable Energy Development of the European Union Countries and Their Similarity Based on the Economic and Demographic Potential," Energies, MDPI, vol. 13(24), pages 1-31, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6643-:d:463125
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6643/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6643/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stamatios Ntanos & Michalis Skordoulis & Grigorios Kyriakopoulos & Garyfallos Arabatzis & Miltiadis Chalikias & Spyros Galatsidas & Athanasios Batzios & Apostolia Katsarou, 2018. "Renewable Energy and Economic Growth: Evidence from European Countries," Sustainability, MDPI, vol. 10(8), pages 1-13, July.
    2. Streimikiene, Dalia & Roos, Inge, 2009. "GHG emission trading implications on energy sector in Baltic States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 854-862, May.
    3. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    4. Zahedi, A., 2011. "A review of drivers, benefits, and challenges in integrating renewable energy sources into electricity grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4775-4779.
    5. Fridtjof Unander, 2005. "Energy indicators and sustainable development: The International Energy Agency approach," Natural Resources Forum, Blackwell Publishing, vol. 29(4), pages 377-391, November.
    6. Marques, António C. & Fuinhas, José A. & Pires Manso, J.R., 2010. "Motivations driving renewable energy in European countries: A panel data approach," Energy Policy, Elsevier, vol. 38(11), pages 6877-6885, November.
    7. Huang, Junbing & Lai, Yali & Hu, Hanlei, 2020. "The effect of technological factors and structural change on China's energy intensity: Evidence from dynamic panel models," China Economic Review, Elsevier, vol. 64(C).
    8. Jarosław Brodny & Magdalena Tutak, 2020. "The Use of Artificial Neural Networks to Analyze Greenhouse Gas and Air Pollutant Emissions from the Mining and Quarrying Sector in the European Union," Energies, MDPI, vol. 13(8), pages 1-31, April.
    9. Tang, Ou & Rehme, Jakob, 2017. "An investigation of renewable certificates policy in Swedish electricity industry using an integrated system dynamics model," International Journal of Production Economics, Elsevier, vol. 194(C), pages 200-213.
    10. Onat, Nevzat & Bayar, Haydar, 2010. "The sustainability indicators of power production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3108-3115, December.
    11. Akalpler, Ergin & Hove, Simbarashe, 2019. "Carbon emissions, energy use, real GDP per capita and trade matrix in the Indian economy-an ARDL approach," Energy, Elsevier, vol. 168(C), pages 1081-1093.
    12. Huiru Zhao & Sen Guo, 2015. "External Benefit Evaluation of Renewable Energy Power in China for Sustainability," Sustainability, MDPI, vol. 7(5), pages 1-23, April.
    13. Cerdeira Bento, João Paulo & Moutinho, Victor, 2016. "CO2 emissions, non-renewable and renewable electricity production, economic growth, and international trade in Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 142-155.
    14. G. Faninger, 2003. "Towards sustainable development in Austria: renewable energy contributions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 8(2), pages 177-188, June.
    15. Wang, Qiang & Li, Shuyu & Pisarenko, Zhanna, 2020. "Heterogeneous effects of energy efficiency, oil price, environmental pressure, R&D investment, and policy on renewable energy -- evidence from the G20 countries," Energy, Elsevier, vol. 209(C).
    16. Yongzhong Jiang & Valerii Havrysh & Oleksandr Klymchuk & Vitalii Nitsenko & Tomas Balezentis & Dalia Streimikiene, 2019. "Utilization of Crop Residue for Power Generation: The Case of Ukraine," Sustainability, MDPI, vol. 11(24), pages 1-21, December.
    17. Katarzyna Chudy-Laskowska & Tomasz Pisula & Mirosław Liana & László Vasa, 2020. "Taxonomic Analysis of the Diversity in the Level of Wind Energy Development in European Union Countries," Energies, MDPI, vol. 13(17), pages 1-21, August.
    18. Jovanović, Marina & Afgan, Naim & Radovanović, Predrag & Stevanović, Vladimir, 2009. "Sustainable development of the Belgrade energy system," Energy, Elsevier, vol. 34(5), pages 532-539.
    19. Markus Arpa & Jesus Crespo Cuaresma & Ernest Gnan & Maria Antoinette Silgoner, 2006. "Oil Price Shock, Energy Prices and Inflation – A Comparison of Austria and the EU," Monetary Policy & the Economy, Oesterreichische Nationalbank (Austrian Central Bank), issue 1, pages 53-77.
    20. Kemmler, Andreas & Spreng, Daniel, 2007. "Energy indicators for tracking sustainability in developing countries," Energy Policy, Elsevier, vol. 35(4), pages 2466-2480, April.
    21. Mihaela Simionescu & Wadim Strielkowski & Manuela Tvaronavičienė, 2020. "Renewable Energy in Final Energy Consumption and Income in the EU-28 Countries," Energies, MDPI, vol. 13(9), pages 1-18, May.
    22. Wen-Chi Liu, 2020. "The Relationship between Primary Energy Consumption and Real Gross Domestic Product: Evidence from Major Asian Countries," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    23. Neves, Ana Rita & Leal, Vítor, 2010. "Energy sustainability indicators for local energy planning: Review of current practices and derivation of a new framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2723-2735, December.
    24. Stocker, Andrea & Großmann, Anett & Madlener, Reinhard & Wolter, Marc Ingo, 2011. "Sustainable energy development in Austria until 2020: Insights from applying the integrated model "e3.at"," Energy Policy, Elsevier, vol. 39(10), pages 6082-6099, October.
    25. Ahmad, Salman & Tahar, Razman Mat, 2014. "Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia," Renewable Energy, Elsevier, vol. 63(C), pages 458-466.
    26. Jaakko J. Jääskeläinen & Sakari Höysniemi & Sanna Syri & Veli-Pekka Tynkkynen, 2018. "Finland’s Dependence on Russian Energy—Mutually Beneficial Trade Relations or an Energy Security Threat?," Sustainability, MDPI, vol. 10(10), pages 1-25, September.
    27. Lu, Hong-fang & Lin, Bin-le & Campbell, Daniel E. & Sagisaka, Masayuki & Ren, Hai, 2016. "Interactions among energy consumption, economic development and greenhouse gas emissions in Japan after World War II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1060-1072.
    28. Aguirre, Mariana & Ibikunle, Gbenga, 2014. "Determinants of renewable energy growth: A global sample analysis," Energy Policy, Elsevier, vol. 69(C), pages 374-384.
    29. Jarosław Brodny & Magdalena Tutak, 2020. "Analyzing Similarities between the European Union Countries in Terms of the Structure and Volume of Energy Production from Renewable Energy Sources," Energies, MDPI, vol. 13(4), pages 1-37, February.
    30. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    31. Holmgren, Sara & Pever, Maris & Fischer, Klara, 2019. "Constructing low-carbon futures? Competing storylines in the Estonian energy sector's translation of EU energy goals," Energy Policy, Elsevier, vol. 135(C).
    32. Sun, Yuanyuan & Mao, Xianqiang & Liu, Gengyuan & Yin, Xinan & Zhao, Yanwei, 2020. "Modelling the effects of energy taxes on ecological footprint transfers in China's foreign trade," Ecological Modelling, Elsevier, vol. 431(C).
    33. Augutis, Juozas & Krikštolaitis, Ričardas & Martišauskas, Linas & Urbonienė, Sigita & Urbonas, Rolandas & Ušpurienė, Aistė Barbora, 2020. "Analysis of energy security level in the Baltic States based on indicator approach," Energy, Elsevier, vol. 199(C).
    34. Runst, Petrik & Thonipara, Anita, 2020. "Dosis facit effectum why the size of the carbon tax matters: Evidence from the Swedish residential sector," Energy Economics, Elsevier, vol. 91(C).
    35. Staffan Jacobsson & Anna Bergek, 2004. "Transforming the energy sector: the evolution of technological systems in renewable energy technology," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 13(5), pages 815-849, October.
    36. Markovska, N. & Taseska, V. & Pop-Jordanov, J., 2009. "SWOT analyses of the national energy sector for sustainable energy development," Energy, Elsevier, vol. 34(6), pages 752-756.
    37. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2009. "Assessment of sustainability indicators for renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1082-1088, June.
    38. Dogan, Eyup & Seker, Fahri, 2016. "Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy," Renewable Energy, Elsevier, vol. 94(C), pages 429-439.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sam Hamels, 2021. "CO 2 Intensities and Primary Energy Factors in the Future European Electricity System," Energies, MDPI, vol. 14(8), pages 1-30, April.
    2. Qiucheng Li & Jiang Hu & Bolin Yu, 2021. "Spatiotemporal Patterns and Influencing Mechanism of Urban Residential Energy Consumption in China," Energies, MDPI, vol. 14(13), pages 1-17, June.
    3. Wen-Hsiang Chiu & Wen-Cheng Lin & Chun-Nan Chen & Nien-Ping Chen, 2021. "Using an Analytical Hierarchy Process to Analyze the Development of the Green Energy Industry," Energies, MDPI, vol. 14(15), pages 1-15, July.
    4. Jan Kaselofsky & Marika Rošā & Anda Jekabsone & Solenne Favre & Gabriel Loustalot & Michaël Toma & Jose Pablo Delgado Marín & Manuel Moreno Nicolás & Emanuele Cosenza, 2021. "Getting Municipal Energy Management Systems ISO 50001 Certified: A Study with 28 European Municipalities," Sustainability, MDPI, vol. 13(7), pages 1-17, March.
    5. Elżbieta Kacperska & Katarzyna Łukasiewicz & Piotr Pietrzak, 2021. "Use of Renewable Energy Sources in the European Union and the Visegrad Group Countries—Results of Cluster Analysis," Energies, MDPI, vol. 14(18), pages 1-17, September.
    6. Iuliana Petronela Gârdan & Adrian Micu & Carmen Adina Paștiu & Angela Eliza Micu & Daniel Adrian Gârdan, 2023. "Consumers’ Attitude towards Renewable Energy in the Context of the Energy Crisis," Energies, MDPI, vol. 16(2), pages 1-31, January.
    7. Kateryna Redko & Olena Borychenko & Anatolii Cherniavskyi & Volodymyr Saienko & Serhii Dudnikov, 2023. "Comparative Analysis of Innovative Development Strategies of Fuel and Energy Complex of Ukraine and the EU Countries: International Experience," International Journal of Energy Economics and Policy, Econjournals, vol. 13(2), pages 301-308, March.
    8. Ecaterina Resniova & Tatiana Ponomarenko, 2021. "Sustainable Development of the Energy Sector in a Country Deficient in Mineral Resources: The Case of the Republic of Moldova," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
    9. Luigi Aldieri & Cristian Barra & Nazzareno Ruggiero & Concetto Paolo Vinci, 2021. "Green Energies, Employment, and Institutional Quality: Some Evidence for the OECD," Sustainability, MDPI, vol. 13(6), pages 1-21, March.
    10. Michail Tsangas & Iliana Papamichael & Antonis A. Zorpas, 2023. "Sustainable Energy Planning in a New Situation," Energies, MDPI, vol. 16(4), pages 1-12, February.
    11. Pawel Witkowski & Adam Adamczyk & Slawomir Franek, 2021. "Does Carbon Risk Matter? Evidence of Carbon Premium in EU Energy-Intensive Companies," Energies, MDPI, vol. 14(7), pages 1-18, March.
    12. Aleksandra Kuzior & Yaryna Samusevych & Serhiy Lyeonov & Dariusz Krawczyk & Dymytrii Grytsyshen, 2023. "Applying Energy Taxes to Promote a Clean, Sustainable and Secure Energy System: Finding the Preferable Approaches," Energies, MDPI, vol. 16(10), pages 1-26, May.
    13. Sanel Halilbegović & Zana Pekmez & Abdul Rehman, 2023. "Modeling the Nexus of Renewable and Non-Renewable Energy Consumption and Economic Progress in Southeastern Europe: A Panel Data Analysis," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
    14. Jiayang Chen & Ying Kong & Shunyong Yin & Jianjun Xia, 2022. "A Comparative Method for Assessment of Sustainable Energy Development across Regions: An Analysis of 30 Provinces in China," Energies, MDPI, vol. 15(15), pages 1-19, August.
    15. Vitor Joao Pereira Domingues MARTINHO, 2023. "Energy Crops: Assessments In The European Union Agricultural Regions Through Machine Learning Approaches," Regional Science Inquiry, Hellenic Association of Regional Scientists, vol. 0(1), pages 29-42, June.
    16. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Agnieszka Mazur-Dudzińska, 2021. "The Situation of Households on the Energy Market in the European Union: Consumption, Prices, and Renewable Energy," Energies, MDPI, vol. 14(19), pages 1-21, October.
    17. Agnieszka Deja & Tygran Dzhuguryan & Lyudmyla Dzhuguryan & Oleg Konradi & Robert Ulewicz, 2021. "Smart Sustainable City Manufacturing and Logistics: A Framework for City Logistics Node 4.0 Operations," Energies, MDPI, vol. 14(24), pages 1-21, December.
    18. Joanna Kisielińska & Monika Roman & Piotr Pietrzak & Michał Roman & Katarzyna Łukasiewicz & Elżbieta Kacperska, 2021. "Utilization of Renewable Energy Sources in Road Transport in EU Countries—TOPSIS Results," Energies, MDPI, vol. 14(22), pages 1-18, November.
    19. Wiktoria Sobczyk & Eugeniusz Jacek Sobczyk, 2021. "Varying the Energy Mix in the EU-28 and in Poland as a Step towards Sustainable Development," Energies, MDPI, vol. 14(5), pages 1-19, March.
    20. Justė Jankevičienė & Arvydas Kanapickas, 2021. "Projected Near-Surface Wind Speed Trends in Lithuania," Energies, MDPI, vol. 14(17), pages 1-13, August.
    21. Robert Ulewicz & Dominika Siwiec & Andrzej Pacana & Magdalena Tutak & Jarosław Brodny, 2021. "Multi-Criteria Method for the Selection of Renewable Energy Sources in the Polish Industrial Sector," Energies, MDPI, vol. 14(9), pages 1-30, April.
    22. Katarzyna Łukasiewicz & Piotr Pietrzak & Jakub Kraciuk & Elżbieta Kacperska & Małgorzata Cieciora, 2022. "Sustainable Energy Development—A Systematic Literature Review," Energies, MDPI, vol. 15(21), pages 1-18, November.
    23. Justyna Światowiec-Szczepańska & Beata Stępień, 2022. "Drivers of Digitalization in the Energy Sector—The Managerial Perspective from the Catching Up Economy," Energies, MDPI, vol. 15(4), pages 1-25, February.
    24. Jarosław Kaczmarek & Konrad Kolegowicz & Wojciech Szymla, 2022. "Restructuring of the Coal Mining Industry and the Challenges of Energy Transition in Poland (1990–2020)," Energies, MDPI, vol. 15(10), pages 1-48, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutak, Magdalena & Brodny, Jarosław, 2022. "Analysis of the level of energy security in the three seas initiative countries," Applied Energy, Elsevier, vol. 311(C).
    2. Magdalena Tutak & Jarosław Brodny & Peter Bindzár, 2021. "Assessing the Level of Energy and Climate Sustainability in the European Union Countries in the Context of the European Green Deal Strategy and Agenda 2030," Energies, MDPI, vol. 14(6), pages 1-32, March.
    3. Przychodzen, Wojciech & Przychodzen, Justyna, 2020. "Determinants of renewable energy production in transition economies: A panel data approach," Energy, Elsevier, vol. 191(C).
    4. Jarosław Brodny & Magdalena Tutak & Peter Bindzár, 2021. "Assessing the Level of Renewable Energy Development in the European Union Member States. A 10-Year Perspective," Energies, MDPI, vol. 14(13), pages 1-38, June.
    5. Vithayasrichareon, Peerapat & MacGill, Iain F. & Nakawiro, Thanawat, 2012. "Assessing the sustainability challenges for electricity industries in ASEAN newly industrialising countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2217-2233.
    6. Dogan, Eyup & Chishti, Muhammad Zubair & Karimi Alavijeh, Nooshin & Tzeremes, Panayiotis, 2022. "The roles of technology and Kyoto Protocol in energy transition towards COP26 targets: Evidence from the novel GMM-PVAR approach for G-7 countries," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    7. Luthra, Sunil & Mangla, Sachin Kumar & Kharb, Ravinder K., 2015. "Sustainable assessment in energy planning and management in Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 58-73.
    8. Marlena Piekut, 2021. "The Consumption of Renewable Energy Sources (RES) by the European Union Households between 2004 and 2019," Energies, MDPI, vol. 14(17), pages 1-31, September.
    9. Agnieszka Wałachowska & Aranka Ignasiak-Szulc, 2021. "Comparison of Renewable Energy Sources in ‘New’ EU Member States in the Context of National Energy Transformations," Energies, MDPI, vol. 14(23), pages 1-17, November.
    10. Mainali, Brijesh & Silveira, Semida, 2015. "Using a sustainability index to assess energy technologies for rural electrification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1351-1365.
    11. Liu, Gang, 2014. "Development of a general sustainability indicator for renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 611-621.
    12. Amine Lahiani & Sinha Avik & Muhammad Shahbaz, 2018. "Renewable energy consumption, income, CO2 emissions and oil prices in G7 countries: The importance of asymmetries," Post-Print hal-03677233, HAL.
    13. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    14. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    15. Shahnazi, Rouhollah & Dehghan Shabani, Zahra, 2020. "Do renewable energy production spillovers matter in the EU?," Renewable Energy, Elsevier, vol. 150(C), pages 786-796.
    16. Daniela Nicoleta Sahlian & Adriana Florina Popa & Raluca Florentina Creţu, 2021. "Does the Increase in Renewable Energy Influence GDP Growth? An EU-28 Analysis," Energies, MDPI, vol. 14(16), pages 1-16, August.
    17. Borozan, Dj, 2022. "Asymmetric effects of policy uncertainty on renewable energy consumption in G7 countries," Renewable Energy, Elsevier, vol. 189(C), pages 412-420.
    18. Goldrath, T. & Ayalon, O. & Shechter, M., 2015. "A combined sustainability index for electricity efficiency measures," Energy Policy, Elsevier, vol. 86(C), pages 574-584.
    19. Koray Altintas & Ozalp Vayvay & Sinan Apak & Emine Cobanoglu, 2020. "An Extended GRA Method Integrated with Fuzzy AHP to Construct a Multidimensional Index for Ranking Overall Energy Sustainability Performances," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    20. Cong Khai Dinh & Quang Thanh Ngo & Trung Thanh Nguyen, 2021. "Medium- and High-Tech Export and Renewable Energy Consumption: Non-Linear Evidence from the ASEAN Countries," Energies, MDPI, vol. 14(15), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6643-:d:463125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.