IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i8p2165-d535374.html
   My bibliography  Save this article

CO 2 Intensities and Primary Energy Factors in the Future European Electricity System

Author

Listed:
  • Sam Hamels

    (Department of Economics, Faculty of Economics and Business Administration, Ghent University, 9000 Ghent, Belgium)

Abstract

The European Union strives for sharp reductions in both CO 2 emissions as well as primary energy use. Electricity consuming technologies are becoming increasingly important in this context, due to the ongoing electrification of transport and heating services. To correctly evaluate these technologies, conversion factors are needed—namely CO 2 intensities and primary energy factors (PEFs). However, this evaluation is hindered by the unavailability of a high-quality database of conversion factor values. Ideally, such a database has a broad geographical scope, a high temporal resolution and considers cross-country exchanges of electricity as well as future evolutions in the electricity mix. In this paper, a state-of-the-art unit commitment economic dispatch model of the European electricity system is developed and a flow-tracing technique is innovatively applied to future scenarios (2025–2040)—to generate such a database and make it publicly available. Important dynamics are revealed, including an overall decrease in conversion factor values as well as considerable temporal variability at both the seasonal and hourly level. Furthermore, the importance of taking into account imports and carefully considering the calculation methodology for PEFs are both confirmed. Future estimates of the CO 2 emissions and primary energy use associated with individual electrical loads can be meaningfully improved by taking into account these dynamics.

Suggested Citation

  • Sam Hamels, 2021. "CO 2 Intensities and Primary Energy Factors in the Future European Electricity System," Energies, MDPI, vol. 14(8), pages 1-30, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2165-:d:535374
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/8/2165/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/8/2165/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Noussan, Michel & Jarre, Matteo & Roberto, Roberta & Russolillo, Daniele, 2018. "Combined vs separate heat and power production – Primary energy comparison in high renewable share contexts," Applied Energy, Elsevier, vol. 213(C), pages 1-10.
    2. Reda, Francesco & Fatima, Zarrin, 2019. "Northern European nearly zero energy building concepts for apartment buildings using integrated solar technologies and dynamic occupancy profile: Focus on Finland and other Northern European countries," Applied Energy, Elsevier, vol. 237(C), pages 598-617.
    3. Olaia Eguiarte & Antonio Garrido-Marijuán & Pablo de Agustín-Camacho & Luis del Portillo & Ander Romero-Amorrortu, 2020. "Energy, Environmental and Economic Analysis of Air-to-Air Heat Pumps as an Alternative to Heating Electrification in Europe," Energies, MDPI, vol. 13(15), pages 1-18, August.
    4. Daniel González-Prieto & Yolanda Fernández-Nava & Elena Marañón & Maria Manuela Prieto, 2020. "Influence of Atlantic Microclimates in Northern Spain on the Environmental Performance of Lightweight Concrete Single-Family Houses," Energies, MDPI, vol. 13(17), pages 1-26, August.
    5. Collins, Seán & Deane, John Paul & Poncelet, Kris & Panos, Evangelos & Pietzcker, Robert C. & Delarue, Erik & Ó Gallachóir, Brian Pádraig, 2017. "Integrating short term variations of the power system into integrated energy system models: A methodological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 839-856.
    6. Collins, Seán & Deane, J.P. & Ó Gallachóir, Brian, 2017. "Adding value to EU energy policy analysis using a multi-model approach with an EU-28 electricity dispatch model," Energy, Elsevier, vol. 130(C), pages 433-447.
    7. Jarosław Brodny & Magdalena Tutak, 2020. "Analyzing Similarities between the European Union Countries in Terms of the Structure and Volume of Energy Production from Renewable Energy Sources," Energies, MDPI, vol. 13(4), pages 1-37, February.
    8. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2016. "Are There Environmental Benefits from Driving Electric Vehicles? The Importance of Local Factors," American Economic Review, American Economic Association, vol. 106(12), pages 3700-3729, December.
    9. Wouter Schram & Atse Louwen & Ioannis Lampropoulos & Wilfried van Sark, 2019. "Comparison of the Greenhouse Gas Emission Reduction Potential of Energy Communities," Energies, MDPI, vol. 12(23), pages 1-23, November.
    10. Ensslen, Axel & Schücking, Maximilian & Jochem, Patrick & Steffens, Henning & Fichtner, Wolf & Wollersheim, Olaf & Stella, Kevin, 2017. "Empirical carbon dioxide emissions of electric vehicles in a French-German commuter fleet test," MPRA Paper 91600, University Library of Munich, Germany.
    11. Mata, Érika & Wanemark, Joel & Nik, Vahid M. & Sasic Kalagasidis, Angela, 2019. "Economic feasibility of building retrofitting mitigation potentials: Climate change uncertainties for Swedish cities," Applied Energy, Elsevier, vol. 242(C), pages 1022-1035.
    12. Deane, J.P. & Chiodi, Alessandro & Gargiulo, Maurizio & Ó Gallachóir, Brian P., 2012. "Soft-linking of a power systems model to an energy systems model," Energy, Elsevier, vol. 42(1), pages 303-312.
    13. Welsch, Manuel & Deane, Paul & Howells, Mark & Ó Gallachóir, Brian & Rogan, Fionn & Bazilian, Morgan & Rogner, Hans-Holger, 2014. "Incorporating flexibility requirements into long-term energy system models – A case study on high levels of renewable electricity penetration in Ireland," Applied Energy, Elsevier, vol. 135(C), pages 600-615.
    14. Ibanez, Eduardo & Magee, Timothy & Clement, Mitch & Brinkman, Gregory & Milligan, Michael & Zagona, Edith, 2014. "Enhancing hydropower modeling in variable generation integration studies," Energy, Elsevier, vol. 74(C), pages 518-528.
    15. Petrovic, Bojana & Myhren, Jonn Are & Zhang, Xingxing & Wallhagen, Marita & Eriksson, Ola, 2019. "Life cycle assessment of a wooden single-family house in Sweden," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    16. Ingrid Munné-Collado & Fabio Maria Aprà & Pol Olivella-Rosell & Roberto Villafáfila-Robles, 2019. "The Potential Role of Flexibility During Peak Hours on Greenhouse Gas Emissions: A Life Cycle Assessment of Five Targeted National Electricity Grid Mixes," Energies, MDPI, vol. 12(23), pages 1-22, November.
    17. Nima Mirzaei Alavijeh & David Steen & Zack Norwood & Le Anh Tuan & Christos Agathokleous, 2020. "Cost-Effectiveness of Carbon Emission Abatement Strategies for a Local Multi-Energy System—A Case Study of Chalmers University of Technology Campus," Energies, MDPI, vol. 13(7), pages 1-23, April.
    18. Magdalena Tutak & Jarosław Brodny & Dominika Siwiec & Robert Ulewicz & Peter Bindzár, 2020. "Studying the Level of Sustainable Energy Development of the European Union Countries and Their Similarity Based on the Economic and Demographic Potential," Energies, MDPI, vol. 13(24), pages 1-31, December.
    19. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    20. Deane, J.P. & Ó Ciaráin, M. & Ó Gallachóir, B.P., 2017. "An integrated gas and electricity model of the EU energy system to examine supply interruptions," Applied Energy, Elsevier, vol. 193(C), pages 479-490.
    21. Dixon, James & Bukhsh, Waqquas & Edmunds, Calum & Bell, Keith, 2020. "Scheduling electric vehicle charging to minimise carbon emissions and wind curtailment," Renewable Energy, Elsevier, vol. 161(C), pages 1072-1091.
    22. Neirotti, Francesco & Noussan, Michel & Simonetti, Marco, 2020. "Towards the electrification of buildings heating - Real heat pumps electricity mixes based on high resolution operational profiles," Energy, Elsevier, vol. 195(C).
    23. Bo Tranberg & Olivier Corradi & Bruno Lajoie & Thomas Gibon & Iain Staffell & Gorm Bruun Andresen, 2018. "Real-Time Carbon Accounting Method for the European Electricity Markets," Papers 1812.06679, arXiv.org, revised May 2019.
    24. Foley, Aoife & Tyther, Barry & Calnan, Patrick & Ó Gallachóir, Brian, 2013. "Impacts of Electric Vehicle charging under electricity market operations," Applied Energy, Elsevier, vol. 101(C), pages 93-102.
    25. John Clauß & Sebastian Stinner & Christian Solli & Karen Byskov Lindberg & Henrik Madsen & Laurent Georges, 2019. "Evaluation Method for the Hourly Average CO 2eq. Intensity of the Electricity Mix and Its Application to the Demand Response of Residential Heating," Energies, MDPI, vol. 12(7), pages 1-25, April.
    26. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Energy and economic analysis of a small hybrid solar-geothermal trigeneration system: A dynamic approach," Energy, Elsevier, vol. 208(C).
    27. Deane, J.P. & Driscoll, Á. & Gallachóir, B.P Ó, 2015. "Quantifying the impacts of national renewable electricity ambitions using a North–West European electricity market model," Renewable Energy, Elsevier, vol. 80(C), pages 604-609.
    28. Bellocchi, Sara & Klöckner, Kai & Manno, Michele & Noussan, Michel & Vellini, Michela, 2019. "On the role of electric vehicles towards low-carbon energy systems: Italy and Germany in comparison," Applied Energy, Elsevier, vol. 255(C).
    29. Deane, J.P. & Drayton, G. & Ó Gallachóir, B.P., 2014. "The impact of sub-hourly modelling in power systems with significant levels of renewable generation," Applied Energy, Elsevier, vol. 113(C), pages 152-158.
    30. Kenneth Leerbeck & Peder Bacher & Rune Grønborg Junker & Anna Tveit & Olivier Corradi & Henrik Madsen & Razgar Ebrahimy, 2020. "Control of Heat Pumps with CO 2 Emission Intensity Forecasts," Energies, MDPI, vol. 13(11), pages 1-19, June.
    31. Michel Noussan & Roberta Roberto & Benedetto Nastasi, 2018. "Performance Indicators of Electricity Generation at Country Level—The Case of Italy," Energies, MDPI, vol. 11(3), pages 1-14, March.
    32. Lidberg, T. & Gustafsson, M. & Myhren, J.A. & Olofsson, T. & Ödlund (former Trygg), L., 2018. "Environmental impact of energy refurbishment of buildings within different district heating systems," Applied Energy, Elsevier, vol. 227(C), pages 231-238.
    33. Piccardo, C. & Dodoo, A. & Gustavsson, L. & Tettey, U.Y.A., 2020. "Retrofitting with different building materials: Life-cycle primary energy implications," Energy, Elsevier, vol. 192(C).
    34. Luca Riboldi & Steve Völler & Magnus Korpås & Lars O. Nord, 2019. "An Integrated Assessment of the Environmental and Economic Impact of Offshore Oil Platform Electrification," Energies, MDPI, vol. 12(11), pages 1-21, June.
    35. Roberto Barrella & Irene Priego & José Ignacio Linares & Eva Arenas & José Carlos Romero & Efraim Centeno, 2020. "Feasibility Study of a Centralised Electrically Driven Air Source Heat Pump Water Heater to Face Energy Poverty in Block Dwellings in Madrid (Spain)," Energies, MDPI, vol. 13(11), pages 1-23, May.
    36. Łukasz Sobol & Arkadiusz Dyjakon, 2020. "The Influence of Power Sources for Charging the Batteries of Electric Cars on CO 2 Emissions during Daily Driving: A Case Study from Poland," Energies, MDPI, vol. 13(16), pages 1-19, August.
    37. Sam Hamels & Eline Himpe & Jelle Laverge & Marc Delghust & Kjartan Van den Brande & Arnold Janssens & Johan Albrecht, 2021. "The use of primary energy factors and CO2 intensities -- reviewing the state of play in academic literature," Papers 2102.13539, arXiv.org.
    38. Ilaria Ballarini & Giovanna De Luca & Argun Paragamyan & Anna Pellegrino & Vincenzo Corrado, 2019. "Transformation of an Office Building into a Nearly Zero Energy Building (nZEB): Implications for Thermal and Visual Comfort and Energy Performance," Energies, MDPI, vol. 12(5), pages 1-18, March.
    39. Noussan, Michel, 2018. "Performance based approach for electricity generation in smart grids," Applied Energy, Elsevier, vol. 220(C), pages 231-241.
    40. Madalina Barbu & George Darie & Monica Siroux, 2019. "Analysis of a Residential Photovoltaic-Thermal (PVT) System in Two Similar Climate Conditions," Energies, MDPI, vol. 12(19), pages 1-18, September.
    41. Stinner, Sebastian & Schlösser, Tim & Huchtemann, Kristian & Müller, Dirk & Monti, Antonello, 2017. "Primary energy evaluation of heat pumps considering dynamic boundary conditions in the energy system," Energy, Elsevier, vol. 138(C), pages 60-78.
    42. Jerzy Sowa & Maciej Mijakowski, 2020. "Humidity-Sensitive, Demand-Controlled Ventilation Applied to Multiunit Residential Building—Performance and Energy Consumption in Dfb Continental Climate," Energies, MDPI, vol. 13(24), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miroslav Variny & Kristián Hanus & Marek Blahušiak & Patrik Furda & Peter Illés & Ján Janošovský, 2021. "Energy and Environmental Assessment of Steam Management Optimization in an Ethylene Plant," IJERPH, MDPI, vol. 18(22), pages 1-17, November.
    2. Peter Mako & Andrej Dávid & Patrik Böhm & Sorin Savu, 2021. "Sustainable Transport in the Danube Region," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    3. Miroslav Variny & Dominika Jediná & Miroslav Rimár & Ján Kizek & Marianna Kšiňanová, 2021. "Cutting Oxygen Production-Related Greenhouse Gas Emissions by Improved Compression Heat Management in a Cryogenic Air Separation Unit," IJERPH, MDPI, vol. 18(19), pages 1-32, October.
    4. Diego Larrahondo & Ricardo Moreno & Harold R. Chamorro & Francisco Gonzalez-Longatt, 2021. "Comparative Performance of Multi-Period ACOPF and Multi-Period DCOPF under High Integration of Wind Power," Energies, MDPI, vol. 14(15), pages 1-15, July.
    5. Constantinos A. Balaras & Elena G. Dascalaki & Ioanna Psarra & Tomasz Cholewa, 2022. "Primary Energy Factors for Electricity Production in Europe," Energies, MDPI, vol. 16(1), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamels, Sam & Himpe, Eline & Laverge, Jelle & Delghust, Marc & Van den Brande, Kjartan & Janssens, Arnold & Albrecht, Johan, 2021. "The use of primary energy factors and CO2 intensities for electricity in the European context - A systematic methodological review and critical evaluation of the contemporary literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    2. Collins, Seán & Deane, J.P. & Ó Gallachóir, Brian, 2017. "Adding value to EU energy policy analysis using a multi-model approach with an EU-28 electricity dispatch model," Energy, Elsevier, vol. 130(C), pages 433-447.
    3. Niina Helistö & Juha Kiviluoma & Hannele Holttinen & Jose Daniel Lara & Bri‐Mathias Hodge, 2019. "Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    4. Fleschutz, Markus & Bohlayer, Markus & Braun, Marco & Henze, Gregor & Murphy, Michael D., 2021. "The effect of price-based demand response on carbon emissions in European electricity markets: The importance of adequate carbon prices," Applied Energy, Elsevier, vol. 295(C).
    5. Poncelet, Kris & Delarue, Erik & D’haeseleer, William, 2020. "Unit commitment constraints in long-term planning models: Relevance, pitfalls and the role of assumptions on flexibility," Applied Energy, Elsevier, vol. 258(C).
    6. Panos, Evangelos & Kober, Tom & Wokaun, Alexander, 2019. "Long term evaluation of electric storage technologies vs alternative flexibility options for the Swiss energy system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    7. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Yu, Haiquan & Zhou, Jianxin & Si, Fengqi & Nord, Lars O., 2022. "Combined heat and power dynamic economic dispatch considering field operational characteristics of natural gas combined cycle plants," Energy, Elsevier, vol. 244(PA).
    9. Chang, Miguel & Lund, Henrik & Thellufsen, Jakob Zinck & Østergaard, Poul Alberg, 2023. "Perspectives on purpose-driven coupling of energy system models," Energy, Elsevier, vol. 265(C).
    10. Dagoumas, Athanasios S. & Koltsaklis, Nikolaos E., 2019. "Review of models for integrating renewable energy in the generation expansion planning," Applied Energy, Elsevier, vol. 242(C), pages 1573-1587.
    11. Yazdanie, M. & Orehounig, K., 2021. "Advancing urban energy system planning and modeling approaches: Gaps and solutions in perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    12. Gyanwali, Khem & Komiyama, Ryoichi & Fujii, Yasumasa, 2020. "Representing hydropower in the dynamic power sector model and assessing clean energy deployment in the power generation mix of Nepal," Energy, Elsevier, vol. 202(C).
    13. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    14. Thomas Heggarty & Jean-Yves Bourmaud & Robin Girard & Georges Kariniotakis, 2024. "Assessing the relative impacts of maximum investment rate and temporal detail in capacity expansion models applied to power systems," Post-Print hal-04383397, HAL.
    15. Mertens, Tim & Poncelet, Kris & Duerinck, Jan & Delarue, Erik, 2020. "Representing cross-border trade of electricity in long-term energy-system optimization models with a limited geographical scope," Applied Energy, Elsevier, vol. 261(C).
    16. Backe, Stian & Zwickl-Bernhard, Sebastian & Schwabeneder, Daniel & Auer, Hans & Korpås, Magnus & Tomasgard, Asgeir, 2022. "Impact of energy communities on the European electricity and heating system decarbonization pathway: Comparing local and global flexibility responses," Applied Energy, Elsevier, vol. 323(C).
    17. Chen, Siyuan & Liu, Pei & Li, Zheng, 2020. "Low carbon transition pathway of power sector with high penetration of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    18. Yoro, Kelvin O. & Daramola, Michael O. & Sekoai, Patrick T. & Wilson, Uwemedimo N. & Eterigho-Ikelegbe, Orevaoghene, 2021. "Update on current approaches, challenges, and prospects of modeling and simulation in renewable and sustainable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    19. Michel Noussan & Francesco Neirotti, 2020. "Cross-Country Comparison of Hourly Electricity Mixes for EV Charging Profiles," Energies, MDPI, vol. 13(10), pages 1-14, May.
    20. Jain, A. & Yamujala, S. & Gaur, A. & Das, P. & Bhakar, R. & Mathur, J., 2023. "Power sector decarbonization planning considering renewable resource variability and system operational constraints," Applied Energy, Elsevier, vol. 331(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2165-:d:535374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.