IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v34y2009i6p752-756.html
   My bibliography  Save this article

SWOT analyses of the national energy sector for sustainable energy development

Author

Listed:
  • Markovska, N.
  • Taseska, V.
  • Pop-Jordanov, J.

Abstract

A holistic perspective of various energy stakeholders regarding the Strengths, Weaknesses, Opportunities and Threats (SWOTs) of the energy sector in Macedonia is utilized as baseline to diagnose the current state and to sketch future action lines towards sustainable energy development. The resulting SWOT analyses pointed to the progressive adoption of European Union (EU) standards in energy policy and regulation as the most important achievement in the energy sector. The most important problems the national energy sector faces are scarce domestic resources and unfavorable energy mix, low electricity prices, a high degree of inefficiency in energy production and use, as well as insufficient institutional and human capacities. The formulated portfolio of actions towards enabling sustainable energy development urges the adoption of a comprehensive energy strategy built upon sustainability principles, intensified utilization of the natural gas, economic prices of electricity, structural changes in industry, promotion of energy efficiency and renewables, including Clean Development Mechanism (CDM) projects, enforcement of EU environmental standards and meeting the environmental requirements, as well as institutional and human capacity building.

Suggested Citation

  • Markovska, N. & Taseska, V. & Pop-Jordanov, J., 2009. "SWOT analyses of the national energy sector for sustainable energy development," Energy, Elsevier, vol. 34(6), pages 752-756.
  • Handle: RePEc:eee:energy:v:34:y:2009:i:6:p:752-756
    DOI: 10.1016/j.energy.2009.02.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544209000450
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.02.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Terrados, J. & Almonacid, G. & Hontoria, L., 2007. "Regional energy planning through SWOT analysis and strategic planning tools.: Impact on renewables development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1275-1287, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Di Leo, Senatro & Salvia, Monica, 2017. "Local strategies and action plans towards resource efficiency in South East Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 286-305.
    2. Gawlik, Bernd Manfred & Sobiecka, Elzbieta & Vaccaro, Stefano & Ciceri, Giovanni, 2007. "Quality management organisation, validation of standards, developments and inquiries for solid-recovered fuels--An overview on the QUOVADIS-Project," Energy Policy, Elsevier, vol. 35(12), pages 6293-6298, December.
    3. Igliński, Bartłomiej & Iglińska, Anna & Koziński, Grzegorz & Skrzatek, Mateusz & Buczkowski, Roman, 2016. "Wind energy in Poland – History, current state, surveys, Renewable Energy Sources Act, SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 19-33.
    4. Mo Chung & Suk Gyu Lee & Chuhwan Park & Hwa-Choon Park & Yong-Hoon Im, 2013. "Development of a Combined Energy-Demands Calculator for Urban Building Communities in Korea," Environment and Planning B, , vol. 40(2), pages 289-310, April.
    5. Terrados, J. & Almonacid, G. & Pérez-Higueras, P., 2009. "Proposal for a combined methodology for renewable energy planning. Application to a Spanish region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2022-2030, October.
    6. Mainali, Bandita & Ngo, Huu Hao & Guo, Wenshan & Pham, Thi Thu Nga & Johnston, Archie, 2011. "Feasibility assessment of recycled water use for washing machines in Australia through SWOT analysis," Resources, Conservation & Recycling, Elsevier, vol. 56(1), pages 87-91.
    7. Calvert, K. & Pearce, J.M. & Mabee, W.E., 2013. "Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 416-429.
    8. Möller, Bernd & Sperling, Karl & Nielsen, Steffen & Smink, Carla & Kerndrup, Søren, 2012. "Creating consciousness about the opportunities to integrate sustainable energy on islands," Energy, Elsevier, vol. 48(1), pages 339-345.
    9. Jizhong Shao & Huixian Chen & Ting Zhu, 2016. "Solar Energy Block-Based Residential Construction for Rural Areas in the West of China," Sustainability, MDPI, vol. 8(4), pages 1-21, April.
    10. Chanthawong, Anuman & Dhakal, Shobhakar, 2016. "Stakeholders' perceptions on challenges and opportunities for biodiesel and bioethanol policy development in Thailand," Energy Policy, Elsevier, vol. 91(C), pages 189-206.
    11. Kaytez, Fazıl, 2022. "Evaluation of priority strategies for the expansion of installed wind power capacity in Turkey using a fuzzy analytic network process analysis," Renewable Energy, Elsevier, vol. 196(C), pages 1281-1293.
    12. Daniel del Barrio Alvarez & Masahiro Sugiyama, 2020. "A SWOT Analysis of Utility-Scale Solar in Myanmar," Energies, MDPI, vol. 13(4), pages 1-17, February.
    13. Celiktas, Melih Soner & Kocar, Gunnur, 2009. "A quadratic helix approach to evaluate the Turkish renewable energies," Energy Policy, Elsevier, vol. 37(11), pages 4959-4965, November.
    14. Li, Y.F. & Huang, G.H. & Li, Y.P. & Xu, Y. & Chen, W.T., 2010. "Regional-scale electric power system planning under uncertainty--A multistage interval-stochastic integer linear programming approach," Energy Policy, Elsevier, vol. 38(1), pages 475-490, January.
    15. Konstantinos Kokkinos & Vayos Karayannis, 2020. "Supportiveness of Low-Carbon Energy Technology Policy Using Fuzzy Multicriteria Decision-Making Methodologies," Mathematics, MDPI, vol. 8(7), pages 1-26, July.
    16. Sebastian Goers & Fiona Rumohr & Sebastian Fendt & Louis Gosselin & Gilberto M. Jannuzzi & Rodolfo D. M. Gomes & Stella M. S. Sousa & Reshmi Wolvers, 2020. "The Role of Renewable Energy in Regional Energy Transitions: An Aggregate Qualitative Analysis for the Partner Regions Bavaria, Georgia, Québec, São Paulo, Shandong, Upper Austria, and Western Cape," Sustainability, MDPI, vol. 13(1), pages 1-30, December.
    17. Andrade, Eurídice M. & Paulo Cosenza, José & Pinguelli Rosa, Luiz & Lacerda, Gleide, 2012. "The vulnerability of hydroelectric generation in the Northeast of Brazil: The environmental and business risks for CHESF," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5760-5769.
    18. Cosmi, Carmelina & Dvarionenė, Jolanta & Marques, Isabel & Di Leo, Senatro & Gecevičius, Giedrius & Gurauskienė, Inga & Mendes, Gisela & Selada, Catarina, 2015. "A holistic approach to sustainable energy development at regional level: The RENERGY self-assessment methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 693-707.
    19. Mirakyan, Atom & Guio, R.D., 2014. "A methodology in innovative support of the integrated energy planning preparation and orientation phase," Energy, Elsevier, vol. 78(C), pages 916-927.
    20. Toptancı, Ali İskan, 2021. "RETRACTED PAPER: "A Macroeconomic Analysis of the Regional Economy of Kurdistan"," EconStor Research Reports 228721, ZBW - Leibniz Information Centre for Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:34:y:2009:i:6:p:752-756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.