IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6362-d454862.html
   My bibliography  Save this article

Is It Possible to Develop Electromobility in Urban Passenger Shipping in Post-Communist Countries? Evidence from Gdańsk, Poland

Author

Listed:
  • Marcin Połom

    (Division of Regional Development, Faculty of Oceanography and Geography, University of Gdańsk, Bażyńskiego 4, 80-309 Gdańsk, Poland)

  • Maciej Tarkowski

    (Division of Regional Development, Faculty of Oceanography and Geography, University of Gdańsk, Bażyńskiego 4, 80-309 Gdańsk, Poland)

  • Krystian Puzdrakiewicz

    (Division of Regional Development, Faculty of Oceanography and Geography, University of Gdańsk, Bażyńskiego 4, 80-309 Gdańsk, Poland)

  • Łukasz Dopierała

    (Department of International Business, Faculty of Economics, University of Gdańsk, Armii Krajowej 119/121, 81-824 Sopot, Poland)

Abstract

Reducing emissions of pollutants from transport is clearly one of the main challenges of the constantly developing world. Because the environmental impact of different means of transport is significant, it is necessary to cut down on fossil fuels and turn to more eco-friendly solutions, e.g., electric vehicles. Almost all European countries are now adapting their transport policies to this new paradigm. Nonetheless, due to large economic disparities, these processes are currently at different levels of implementation in Western and Eastern Europe. The main focus is on private electric cars and more traditional means of transport, rather than water trams. This article presents possible means of developing water tram lines in Gdańsk served by hybrid or full-electric vehicles. The analysis presented herein reflects the multidimensional nature of the issue. The article provides data on the socio-economic situation in the city, technical issues related to the implementation of such tram lines, and the possible consequences of introducing a new means of transportation into the existing system. A key part of the analysis is the identification of anticipated economic and environmental consequences of introducing both hybrid and full-electric vehicles into the system. A comprehensive socio-economic and technical-environmental analysis of the possibilities of developing urban electromobility in the form of urban passenger shipping in post-communist countries, such as that presented in this paper, has not been previously published.

Suggested Citation

  • Marcin Połom & Maciej Tarkowski & Krystian Puzdrakiewicz & Łukasz Dopierała, 2020. "Is It Possible to Develop Electromobility in Urban Passenger Shipping in Post-Communist Countries? Evidence from Gdańsk, Poland," Energies, MDPI, vol. 13(23), pages 1-24, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6362-:d:454862
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6362/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6362/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bipashyee Ghosh & Johan Schot, 2018. "Mapping Socio-Technical Change in Mobility Regimes: The Case of Kolkata," SPRU Working Paper Series 2018-16, SPRU - Science Policy Research Unit, University of Sussex Business School.
    2. Asit Bandyopadhayay & Ashim Banerjee, 2017. "In pursuit of a sustainable traffic and transportation system: a case study of Kolkata," International Journal of Management Practice, Inderscience Enterprises Ltd, vol. 10(1), pages 1-16.
    3. Rogers, Patricia J. & Stevens, Kaye & Boymal, Jonathan, 2009. "Qualitative cost-benefit evaluation of complex, emergent programs," Evaluation and Program Planning, Elsevier, vol. 32(1), pages 83-90, February.
    4. Zachary P. Cano & Dustin Banham & Siyu Ye & Andreas Hintennach & Jun Lu & Michael Fowler & Zhongwei Chen, 2018. "Batteries and fuel cells for emerging electric vehicle markets," Nature Energy, Nature, vol. 3(4), pages 279-289, April.
    5. Björn Nykvist & Måns Nilsson, 2015. "Rapidly falling costs of battery packs for electric vehicles," Nature Climate Change, Nature, vol. 5(4), pages 329-332, April.
    6. Baird, Alfred J. & Pedersen, Roy N., 2013. "Analysis of CO2 emissions for island ferry services," Journal of Transport Geography, Elsevier, vol. 32(C), pages 77-85.
    7. Sorrell, Steve, 2009. "Jevons' Paradox revisited: The evidence for backfire from improved energy efficiency," Energy Policy, Elsevier, vol. 37(4), pages 1456-1469, April.
    8. Gil Solá, Ana & Vilhelmson, Bertil & Larsson, Anders, 2018. "Understanding sustainable accessibility in urban planning: Themes of consensus, themes of tension," Journal of Transport Geography, Elsevier, vol. 70(C), pages 1-10.
    9. Biresselioglu, Mehmet Efe & Demirbag Kaplan, Melike & Yilmaz, Barbara Katharina, 2018. "Electric mobility in Europe: A comprehensive review of motivators and barriers in decision making processes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 109(C), pages 1-13.
    10. Große, Juliane & Olafsson, Anton Stahl & Carstensen, Trine Agervig & Fertner, Christian, 2018. "Exploring the role of daily “modality styles” and urban structure in holidays and longer weekend trips: Travel behaviour of urban and peri-urban residents in Greater Copenhagen," Journal of Transport Geography, Elsevier, vol. 69(C), pages 138-149.
    11. van den Bergh, Jeroen C. J. M., 2004. "Optimal climate policy is a utopia: from quantitative to qualitative cost-benefit analysis," Ecological Economics, Elsevier, vol. 48(4), pages 385-393, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maciej Tarkowski, 2021. "On the Emergence of Sociotechnical Regimes of Electric Urban Water Transit Systems," Energies, MDPI, vol. 14(19), pages 1-21, September.
    2. Maciej Tarkowski & Krystian Puzdrakiewicz, 2021. "Connectivity Benefits of Small Zero-Emission Autonomous Ferries in Urban Mobility—Case of the Coastal City of Gdańsk (Poland)," Sustainability, MDPI, vol. 13(23), pages 1-13, November.
    3. Marcin Łuszczyk & Adam Sulich & Barbara Siuta-Tokarska & Tomasz Zema & Agnieszka Thier, 2021. "The Development of Electromobility in the European Union: Evidence from Poland and Cross-Country Comparisons," Energies, MDPI, vol. 14(24), pages 1-18, December.
    4. Marta Borowska-Stefańska & Michał Kowalski & Paulina Kurzyk & Miroslava Mikušová & Szymon Wiśniewski, 2021. "Privileging Electric Vehicles as an Element of Promoting Sustainable Urban Mobility—Effects on the Local Transport System in a Large Metropolis in Poland," Energies, MDPI, vol. 14(13), pages 1-24, June.
    5. Piotr Przybyłowski & Adam Przybyłowski & Agnieszka Kałaska, 2021. "Utility Method as an Instrument of the Quality of Life Assessment Using the Examples of Selected European Cities," Energies, MDPI, vol. 14(10), pages 1-14, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
    2. Plunkett, Samuel T. & Chen, Chengxiu & Rojaee, Ramin & Doherty, Patrick & Sik Oh, Yun & Galazutdinova, Yana & Krishnamurthy, Mahesh & Al-Hallaj, Said, 2021. "Enhancing thermal safety in lithium-ion battery packs through parallel cell ‘current dumping’ mitigation," Applied Energy, Elsevier, vol. 286(C).
    3. Trencher, Gregory & Taeihagh, Araz & Yarime, Masaru, 2020. "Overcoming barriers to developing and diffusing fuel-cell vehicles: Governance strategies and experiences in Japan," Energy Policy, Elsevier, vol. 142(C).
    4. Malhotra, Abhishek & Zhang, Huiting & Beuse, Martin & Schmidt, Tobias, 2021. "How do new use environments influence a technology's knowledge trajectory? A patent citation network analysis of lithium-ion battery technology," Research Policy, Elsevier, vol. 50(9).
    5. Yang, Zaoli & Li, Qin & Yan, Yamin & Shang, Wen-Long & Ochieng, Washington, 2022. "Examining influence factors of Chinese electric vehicle market demand based on online reviews under moderating effect of subsidy policy," Applied Energy, Elsevier, vol. 326(C).
    6. Schwab, Julia & Sölch, Christian & Zöttl, Gregor, 2022. "Electric Vehicle Cost in 2035: The impact of market penetration and charging strategies," Energy Economics, Elsevier, vol. 114(C).
    7. Gregory Trencher & Achmed Edianto, 2021. "Drivers and Barriers to the Adoption of Fuel Cell Passenger Vehicles and Buses in Germany," Energies, MDPI, vol. 14(4), pages 1-26, February.
    8. Yang, Chen, 2022. "Running battery electric vehicles with extended range: Coupling cost and energy analysis," Applied Energy, Elsevier, vol. 306(PB).
    9. O. Y. Edelenbosch & A. F. Hof & B. Nykvist & B. Girod & D. P. Vuuren, 2018. "Transport electrification: the effect of recent battery cost reduction on future emission scenarios," Climatic Change, Springer, vol. 151(2), pages 95-108, November.
    10. Ettore Bompard & Daniele Grosso & Tao Huang & Francesco Profumo & Xianzhang Lei & Duo Li, 2018. "World Decarbonization through Global Electricity Interconnections," Energies, MDPI, vol. 11(7), pages 1-29, July.
    11. Huang, Qisheng & Xu, Yunjian & Courcoubetis, Costas, 2020. "Stackelberg competition between merchant and regulated storage investment in wholesale electricity markets," Applied Energy, Elsevier, vol. 264(C).
    12. Gnann, Till & Stephens, Thomas S. & Lin, Zhenhong & Plötz, Patrick & Liu, Changzheng & Brokate, Jens, 2018. "What drives the market for plug-in electric vehicles? - A review of international PEV market diffusion models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 158-164.
    13. Carsten Helm & Mathias Mier, 2020. "Steering the Energy Transition in a World of Intermittent Electricity Supply: Optimal Subsidies and Taxes for Renewables Storage," ifo Working Paper Series 330, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    14. Yashraj Tripathy & Andrew McGordon & Anup Barai, 2020. "Improving Accessible Capacity Tracking at Low Ambient Temperatures for Range Estimation of Battery Electric Vehicles," Energies, MDPI, vol. 13(8), pages 1-18, April.
    15. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.
    16. Steffen Dalsgaard, 2022. "Can IT Resolve the Climate Crisis? Sketching the Role of an Anthropology of Digital Technology," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    17. Biswas, D.B. & Bose, S. & Dalvi, V.H. & Deshmukh, S.P. & Shenoy, N.V. & Panse, S.V. & Joshi, J.B., 2020. "A techno-economic comparison between piston steam engines as dispatchable power generation systems for renewable energy with concentrated solar harvesting and thermal storage against solar photovoltai," Energy, Elsevier, vol. 213(C).
    18. Ivan Mareev & Dirk Uwe Sauer, 2018. "Energy Consumption and Life Cycle Costs of Overhead Catenary Heavy-Duty Trucks for Long-Haul Transportation," Energies, MDPI, vol. 11(12), pages 1-18, December.
    19. Lucio Ciabattoni & Stefano Cardarelli & Marialaura Di Somma & Giorgio Graditi & Gabriele Comodi, 2021. "A Novel Open-Source Simulator Of Electric Vehicles in a Demand-Side Management Scenario," Energies, MDPI, vol. 14(6), pages 1-16, March.
    20. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6362-:d:454862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.