IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i19p5190-d424029.html
   My bibliography  Save this article

Electricity Price Forecasting Based on Self-Adaptive Decomposition and Heterogeneous Ensemble Learning

Author

Listed:
  • Matheus Henrique Dal Molin Ribeiro

    (Department of Mathematics (DAMAT), Federal Technological University of Parana (UTFPR), Pato Branco (PR) 85503-390, Brazil
    Industrial and Systems Engineering Graduate Program (PPGEPS), Pontifical Catholic University of Parana (PUCPR), Curitiba (PR) 80215-901, Brazil)

  • Stéfano Frizzo Stefenon

    (Electrical Engineering Graduate Program, Department of Electrical Engineering, Santa Catarina State University (UDESC), Joinvile (SC) 80215-901, Brazil)

  • José Donizetti de Lima

    (Department of Mathematics (DAMAT), Federal Technological University of Parana (UTFPR), Pato Branco (PR) 85503-390, Brazil
    Industrial and Systems Engineering Graduate Program (PPGEPS), Federal Technological University of Parana (UTFPR), Pato Branco (PR) 85503-390, Brazil)

  • Ademir Nied

    (Electrical Engineering Graduate Program, Department of Electrical Engineering, Santa Catarina State University (UDESC), Joinvile (SC) 80215-901, Brazil)

  • Viviana Cocco Mariani

    (Department of Electrical Engineering, Federal University of Parana (UFPR), Curitiba (PR) 80060-000, Brazil
    Department of Mechanical Engineering, Pontifical Catholic University of Parana (PUCPR), Curitiba (PR) 80215-901, Brazil)

  • Leandro dos Santos Coelho

    (Industrial and Systems Engineering Graduate Program (PPGEPS), Pontifical Catholic University of Parana (PUCPR), Curitiba (PR) 80215-901, Brazil
    Department of Electrical Engineering, Federal University of Parana (UFPR), Curitiba (PR) 80060-000, Brazil)

Abstract

Electricity price forecasting plays a vital role in the financial markets. This paper proposes a self-adaptive, decomposed, heterogeneous, and ensemble learning model for short-term electricity price forecasting one, two, and three-months-ahead in the Brazilian market. Exogenous variables, such as supply, lagged prices and demand are considered as inputs signals of the forecasting model. Firstly, the coyote optimization algorithm is adopted to tune the hyperparameters of complementary ensemble empirical mode decomposition in the pre-processing phase. Next, three machine learning models, including extreme learning machine, gradient boosting machine, and support vector regression models, as well as Gaussian process, are designed with the intent of handling the components obtained through the signal decomposition approach with focus on time series forecasting. The individual forecasting models are directly integrated in order to obtain the final forecasting prices one to three-months-ahead. In this case, a grid of forecasting models is obtained. The best forecasting model is the one that has better generalization out-of-sample. The empirical results show the efficiency of the proposed model. Additionally, it can achieve forecasting errors lower than 4.2% in terms of symmetric mean absolute percentage error. The ranking of importance of the variables, from the smallest to the largest is, lagged prices, demand, and supply. This paper provided useful insights for multi-step-ahead forecasting in the electrical market, once the proposed model can enhance forecasting accuracy and stability.

Suggested Citation

  • Matheus Henrique Dal Molin Ribeiro & Stéfano Frizzo Stefenon & José Donizetti de Lima & Ademir Nied & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2020. "Electricity Price Forecasting Based on Self-Adaptive Decomposition and Heterogeneous Ensemble Learning," Energies, MDPI, vol. 13(19), pages 1-22, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5190-:d:424029
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/19/5190/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/19/5190/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Jinliang & Tan, Zhongfu & Wei, Yiming, 2020. "An adaptive hybrid model for short term electricity price forecasting," Applied Energy, Elsevier, vol. 258(C).
    2. Tiago Silveira Gontijo & Marcelo Azevedo Costa, 2020. "Forecasting Hierarchical Time Series in Power Generation," Energies, MDPI, vol. 13(14), pages 1-17, July.
    3. Kazemzadeh, Mohammad-Rasool & Amjadian, Ali & Amraee, Turaj, 2020. "A hybrid data mining driven algorithm for long term electric peak load and energy demand forecasting," Energy, Elsevier, vol. 204(C).
    4. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    5. Jiang Wu & Yu Chen & Tengfei Zhou & Taiyong Li, 2019. "An Adaptive Hybrid Learning Paradigm Integrating CEEMD, ARIMA and SBL for Crude Oil Price Forecasting," Energies, MDPI, vol. 12(7), pages 1-23, April.
    6. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    7. Fiorucci, Jose A. & Pellegrini, Tiago R. & Louzada, Francisco & Petropoulos, Fotios & Koehler, Anne B., 2016. "Models for optimising the theta method and their relationship to state space models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1151-1161.
    8. Assimakopoulos, V. & Nikolopoulos, K., 2000. "The theta model: a decomposition approach to forecasting," International Journal of Forecasting, Elsevier, vol. 16(4), pages 521-530.
    9. Alipour, Mohammadali & Aghaei, Jamshid & Norouzi, Mohammadali & Niknam, Taher & Hashemi, Sattar & Lehtonen, Matti, 2020. "A novel electrical net-load forecasting model based on deep neural networks and wavelet transform integration," Energy, Elsevier, vol. 205(C).
    10. Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
    11. Fredo, Guilherme Luiz Minetto & Finardi, Erlon Cristian & de Matos, Vitor Luiz, 2019. "Assessing solution quality and computational performance in the long-term generation scheduling problem considering different hydro production function approaches," Renewable Energy, Elsevier, vol. 131(C), pages 45-54.
    12. Nantian Huang & Enkai Xing & Guowei Cai & Zhiyong Yu & Bin Qi & Lin Lin, 2018. "Short-Term Wind Speed Forecasting Based on Low Redundancy Feature Selection," Energies, MDPI, vol. 11(7), pages 1-19, June.
    13. Zhang, Xiaobo & Wang, Jianzhou & Gao, Yuyang, 2019. "A hybrid short-term electricity price forecasting framework: Cuckoo search-based feature selection with singular spectrum analysis and SVM," Energy Economics, Elsevier, vol. 81(C), pages 899-913.
    14. Qiao, Weibiao & Yang, Zhe, 2020. "Forecast the electricity price of U.S. using a wavelet transform-based hybrid model," Energy, Elsevier, vol. 193(C).
    15. Zelan Li & Yijia Cao & Le Van Dai & Xiaoliang Yang & Thang Trung Nguyen, 2019. "Optimal Power Flow for Transmission Power Networks Using a Novel Metaheuristic Algorithm," Energies, MDPI, vol. 12(22), pages 1-36, November.
    16. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
    17. Diego Aineto & Javier Iranzo-Sánchez & Lenin G. Lemus-Zúñiga & Eva Onaindia & Javier F. Urchueguía, 2019. "On the Influence of Renewable Energy Sources in Electricity Price Forecasting in the Iberian Market," Energies, MDPI, vol. 12(11), pages 1-20, May.
    18. Kaboli, S. Hr. Aghay & Fallahpour, A. & Selvaraj, J. & Rahim, N.A., 2017. "Long-term electrical energy consumption formulating and forecasting via optimized gene expression programming," Energy, Elsevier, vol. 126(C), pages 144-164.
    19. Zhang, Jinliang & Wei, Yiming & Tan, Zhongfu, 2020. "An adaptive hybrid model for short term wind speed forecasting," Energy, Elsevier, vol. 190(C).
    20. Maciejowska, Katarzyna, 2020. "Assessing the impact of renewable energy sources on the electricity price level and variability – A quantile regression approach," Energy Economics, Elsevier, vol. 85(C).
    21. Yeojin Kim & Jin Hur, 2020. "An Ensemble Forecasting Model of Wind Power Outputs Based on Improved Statistical Approaches," Energies, MDPI, vol. 13(5), pages 1-11, March.
    22. Gabriel Trierweiler Ribeiro & João Guilherme Sauer & Naylene Fraccanabbia & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2020. "Bayesian Optimized Echo State Network Applied to Short-Term Load Forecasting," Energies, MDPI, vol. 13(9), pages 1-19, May.
    23. Yang, Wendong & Wang, Jianzhou & Niu, Tong & Du, Pei, 2019. "A hybrid forecasting system based on a dual decomposition strategy and multi-objective optimization for electricity price forecasting," Applied Energy, Elsevier, vol. 235(C), pages 1205-1225.
    24. Heydari, Azim & Majidi Nezhad, Meysam & Pirshayan, Elmira & Astiaso Garcia, Davide & Keynia, Farshid & De Santoli, Livio, 2020. "Short-term electricity price and load forecasting in isolated power grids based on composite neural network and gravitational search optimization algorithm," Applied Energy, Elsevier, vol. 277(C).
    25. Muniain, Peru & Ziel, Florian, 2020. "Probabilistic forecasting in day-ahead electricity markets: Simulating peak and off-peak prices," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1193-1210.
    26. Taiyong Li & Yingrui Zhou & Xinsheng Li & Jiang Wu & Ting He, 2019. "Forecasting Daily Crude Oil Prices Using Improved CEEMDAN and Ridge Regression-Based Predictors," Energies, MDPI, vol. 12(19), pages 1-25, September.
    27. Cocco Mariani, Viviana & Hennings Och, Stephan & dos Santos Coelho, Leandro & Domingues, Eric, 2019. "Pressure prediction of a spark ignition single cylinder engine using optimized extreme learning machine models," Applied Energy, Elsevier, vol. 249(C), pages 204-221.
    28. da Silva, Ramon Gomes & Ribeiro, Matheus Henrique Dal Molin & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2020. "Forecasting Brazilian and American COVID-19 cases based on artificial intelligence coupled with climatic exogenous variables," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    29. Yang, Zhang & Ce, Li & Lian, Li, 2017. "Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods," Applied Energy, Elsevier, vol. 190(C), pages 291-305.
    30. Xin Zhao & Haikun Wei & Chenxi Li & Kanjian Zhang, 2020. "A Hybrid Nonlinear Forecasting Strategy for Short-Term Wind Speed," Energies, MDPI, vol. 13(7), pages 1-15, April.
    31. Agrawal, Rahul Kumar & Muchahary, Frankle & Tripathi, Madan Mohan, 2019. "Ensemble of relevance vector machines and boosted trees for electricity price forecasting," Applied Energy, Elsevier, vol. 250(C), pages 540-548.
    32. Stéfano Frizzo Stefenon & Roberto Zanetti Freire & Leandro dos Santos Coelho & Luiz Henrique Meyer & Rafael Bartnik Grebogi & William Gouvêa Buratto & Ademir Nied, 2020. "Electrical Insulator Fault Forecasting Based on a Wavelet Neuro-Fuzzy System," Energies, MDPI, vol. 13(2), pages 1-19, January.
    33. Ribeiro, Matheus Henrique Dal Molin & da Silva, Ramon Gomes & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2020. "Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anne Carolina Rodrigues Klaar & Stefano Frizzo Stefenon & Laio Oriel Seman & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2023. "Structure Optimization of Ensemble Learning Methods and Seasonal Decomposition Approaches to Energy Price Forecasting in Latin America: A Case Study about Mexico," Energies, MDPI, vol. 16(7), pages 1-17, March.
    2. Sajjad Khan & Shahzad Aslam & Iqra Mustafa & Sheraz Aslam, 2021. "Short-Term Electricity Price Forecasting by Employing Ensemble Empirical Mode Decomposition and Extreme Learning Machine," Forecasting, MDPI, vol. 3(3), pages 1-18, June.
    3. Xiong, Xiaoping & Qing, Guohua, 2023. "A hybrid day-ahead electricity price forecasting framework based on time series," Energy, Elsevier, vol. 264(C).
    4. Andr s Oviedo-G mez & Sandra Milena Londo o-Hern ndez & Diego Fernando Manotas-Duque, 2021. "Electricity Price Fundamentals in Hydrothermal Power Generation Markets Using Machine Learning and Quantile Regression Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 66-77.
    5. Cristina Keiko Yamaguchi & Stéfano Frizzo Stefenon & Ney Kassiano Ramos & Vanessa Silva dos Santos & Fernanda Forbici & Anne Carolina Rodrigues Klaar & Fernanda Cristina Silva Ferreira & Alessandra Ca, 2020. "Young People’s Perceptions about the Difficulties of Entrepreneurship and Developing Rural Properties in Family Agriculture," Sustainability, MDPI, vol. 12(21), pages 1-12, October.
    6. da Silva, Ramon Gomes & Ribeiro, Matheus Henrique Dal Molin & Moreno, Sinvaldo Rodrigues & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2021. "A novel decomposition-ensemble learning framework for multi-step ahead wind energy forecasting," Energy, Elsevier, vol. 216(C).
    7. Beltrán, Sergio & Castro, Alain & Irizar, Ion & Naveran, Gorka & Yeregui, Imanol, 2022. "Framework for collaborative intelligence in forecasting day-ahead electricity price," Applied Energy, Elsevier, vol. 306(PA).
    8. Štefan Bojnec & Alan Križaj, 2021. "Electricity Markets during the Liberalization: The Case of a European Union Country," Energies, MDPI, vol. 14(14), pages 1-21, July.
    9. Yu Jin & Honggang Guo & Jianzhou Wang & Aiyi Song, 2020. "A Hybrid System Based on LSTM for Short-Term Power Load Forecasting," Energies, MDPI, vol. 13(23), pages 1-32, November.
    10. Zaki Masood & Rahma Gantassi & Ardiansyah & Yonghoon Choi, 2022. "A Multi-Step Time-Series Clustering-Based Seq2Seq LSTM Learning for a Single Household Electricity Load Forecasting," Energies, MDPI, vol. 15(7), pages 1-11, April.
    11. Raydonal Ospina & Jaciele Oliveira & Cristiano Ferraz & André Leite & João Gondim, 2023. "Ensemble Algorithms to Improve COVID-19 Growth Curve Estimates," Stats, MDPI, vol. 6(4), pages 1-18, September.
    12. Zhou, Feite & Huang, Zhehao & Zhang, Changhong, 2022. "Carbon price forecasting based on CEEMDAN and LSTM," Applied Energy, Elsevier, vol. 311(C).
    13. Athanasios Ioannis Arvanitidis & Dimitrios Bargiotas & Dimitrios Kontogiannis & Athanasios Fevgas & Miltiadis Alamaniotis, 2022. "Optimized Data-Driven Models for Short-Term Electricity Price Forecasting Based on Signal Decomposition and Clustering Techniques," Energies, MDPI, vol. 15(21), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hasnain Iftikhar & Josue E. Turpo-Chaparro & Paulo Canas Rodrigues & Javier Linkolk López-Gonzales, 2023. "Forecasting Day-Ahead Electricity Prices for the Italian Electricity Market Using a New Decomposition—Combination Technique," Energies, MDPI, vol. 16(18), pages 1-23, September.
    2. Narajewski, Michał & Ziel, Florian, 2020. "Ensemble forecasting for intraday electricity prices: Simulating trajectories," Applied Energy, Elsevier, vol. 279(C).
    3. Yang, Wendong & Sun, Shaolong & Hao, Yan & Wang, Shouyang, 2022. "A novel machine learning-based electricity price forecasting model based on optimal model selection strategy," Energy, Elsevier, vol. 238(PC).
    4. Micha{l} Narajewski & Florian Ziel, 2020. "Ensemble Forecasting for Intraday Electricity Prices: Simulating Trajectories," Papers 2005.01365, arXiv.org, revised Aug 2020.
    5. Meng, Anbo & Wang, Peng & Zhai, Guangsong & Zeng, Cong & Chen, Shun & Yang, Xiaoyi & Yin, Hao, 2022. "Electricity price forecasting with high penetration of renewable energy using attention-based LSTM network trained by crisscross optimization," Energy, Elsevier, vol. 254(PA).
    6. Jasiński, Tomasz, 2020. "Use of new variables based on air temperature for forecasting day-ahead spot electricity prices using deep neural networks: A new approach," Energy, Elsevier, vol. 213(C).
    7. Sajjad Khan & Shahzad Aslam & Iqra Mustafa & Sheraz Aslam, 2021. "Short-Term Electricity Price Forecasting by Employing Ensemble Empirical Mode Decomposition and Extreme Learning Machine," Forecasting, MDPI, vol. 3(3), pages 1-18, June.
    8. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    9. Yang, Haolin & Schell, Kristen R., 2021. "Real-time electricity price forecasting of wind farms with deep neural network transfer learning and hybrid datasets," Applied Energy, Elsevier, vol. 299(C).
    10. Lu, Xin & Qiu, Jing & Lei, Gang & Zhu, Jianguo, 2022. "Scenarios modelling for forecasting day-ahead electricity prices: Case studies in Australia," Applied Energy, Elsevier, vol. 308(C).
    11. Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Applied Energy, Elsevier, vol. 293(C).
    12. Elmore, Clay T. & Dowling, Alexander W., 2021. "Learning spatiotemporal dynamics in wholesale energy markets with dynamic mode decomposition," Energy, Elsevier, vol. 232(C).
    13. Liu, Luyao & Bai, Feifei & Su, Chenyu & Ma, Cuiping & Yan, Ruifeng & Li, Hailong & Sun, Qie & Wennersten, Ronald, 2022. "Forecasting the occurrence of extreme electricity prices using a multivariate logistic regression model," Energy, Elsevier, vol. 247(C).
    14. Shao, Zhen & Yang, Yudie & Zheng, Qingru & Zhou, Kaile & Liu, Chen & Yang, Shanlin, 2022. "A pattern classification methodology for interval forecasts of short-term electricity prices based on hybrid deep neural networks: A comparative analysis," Applied Energy, Elsevier, vol. 327(C).
    15. Kang, Yanfei & Spiliotis, Evangelos & Petropoulos, Fotios & Athiniotis, Nikolaos & Li, Feng & Assimakopoulos, Vassilios, 2021. "Déjà vu: A data-centric forecasting approach through time series cross-similarity," Journal of Business Research, Elsevier, vol. 132(C), pages 719-731.
    16. Li, Jinchao & Wu, Qianqian & Tian, Yu & Fan, Liguo, 2021. "Monthly Henry Hub natural gas spot prices forecasting using variational mode decomposition and deep belief network," Energy, Elsevier, vol. 227(C).
    17. AL-Alimi, Dalal & AlRassas, Ayman Mutahar & Al-qaness, Mohammed A.A. & Cai, Zhihua & Aseeri, Ahmad O. & Abd Elaziz, Mohamed & Ewees, Ahmed A., 2023. "TLIA: Time-series forecasting model using long short-term memory integrated with artificial neural networks for volatile energy markets," Applied Energy, Elsevier, vol. 343(C).
    18. Jiang, Ping & Nie, Ying & Wang, Jianzhou & Huang, Xiaojia, 2023. "Multivariable short-term electricity price forecasting using artificial intelligence and multi-input multi-output scheme," Energy Economics, Elsevier, vol. 117(C).
    19. Katarzyna Maciejowska & Bartosz Uniejewski & Rafa{l} Weron, 2022. "Forecasting Electricity Prices," Papers 2204.11735, arXiv.org.
    20. Ribeiro, Matheus Henrique Dal Molin & da Silva, Ramon Gomes & Ribeiro, Gabriel Trierweiler & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2023. "Cooperative ensemble learning model improves electric short-term load forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5190-:d:424029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.