IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4468-d406287.html
   My bibliography  Save this article

Sustainable Protected Cropping: A Case Study of Seasonal Impacts on Greenhouse Energy Consumption during Capsicum Production

Author

Listed:
  • Premaratne Samaranayake

    (School of Business, Western Sydney University, Penrith, NSW 2751, Australia)

  • Weiguang Liang

    (National Vegetable Protected Cropping Centre, Western Sydney University, Penrith, NSW 2751, Australia)

  • Zhong-Hua Chen

    (School of Science, Western Sydney University, Penrith, NSW 2751, Australia
    Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia)

  • David Tissue

    (Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia)

  • Yi-Chen Lan

    (School of Business, Western Sydney University, Penrith, NSW 2751, Australia)

Abstract

Sustainable food production in protected cropping is increasing rapidly in response to global climate change and population growth. However, there are significant knowledge gaps regarding energy consumption while achieving optimum environmental conditions for greenhouse crop production. A capsicum crop cultivated in a high-tech greenhouse facility in Australia was analysed in terms of relationships between key environmental variables and the comparative analysis of energy consumption during different seasons. We showed that daily energy consumption varied due to the seasonal nature of the external environment and maintenance of optimal growing temperatures. Total power consumption reported throughout the entire crop cycle for heating (gas hot water system) and cooling (pad and fan) was 12,503 and 5183 kWh, respectively; hence, heating consumed ca. 70% of the total energy requirement over the 8-month growing period (early spring to late autumn) in the greenhouse facility. Regressions of daily energy consumption within each season, designated either predominantly for heating or cooling, indicated that energy consumption was 14.62 kWh per 1 °C heating and 2.23 kWh per 1 °C cooling. Therefore, changing the planting date to late spring is likely to significantly reduce heating energy costs for greenhouse capsicum growers in Australia. The findings will provide useful guidelines to maximise the greenhouse production of capsicum with better economic return by taking into consideration the potential optimal energy saving strategy during different external environment conditions and seasons.

Suggested Citation

  • Premaratne Samaranayake & Weiguang Liang & Zhong-Hua Chen & David Tissue & Yi-Chen Lan, 2020. "Sustainable Protected Cropping: A Case Study of Seasonal Impacts on Greenhouse Energy Consumption during Capsicum Production," Energies, MDPI, vol. 13(17), pages 1-23, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4468-:d:406287
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4468/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4468/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vadiee, Amir & Martin, Viktoria, 2012. "Energy management in horticultural applications through the closed greenhouse concept, state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5087-5100.
    2. Bambara, James & Athienitis, Andreas K., 2019. "Energy and economic analysis for the design of greenhouses with semi-transparent photovoltaic cladding," Renewable Energy, Elsevier, vol. 131(C), pages 1274-1287.
    3. Barkat Rabbi & Zhong-Hua Chen & Subbu Sethuvenkatraman, 2019. "Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods," Energies, MDPI, vol. 12(14), pages 1-24, July.
    4. Joana Almeida & Wouter M.J. Achten & Bruno Verbist & Reindert F. Heuts & Eddie Schrevens & Bart Muys, 2014. "Carbon and Water Footprints and Energy Use of Greenhouse Tomato Production in Northern Italy," Journal of Industrial Ecology, Yale University, vol. 18(6), pages 898-908, December.
    5. Bonachela, S. & Quesada, J. & Acuña, R.A. & Magán, J.J. & Marfà, O., 2010. "Oxyfertigation of a greenhouse tomato crop grown on rockwool slabs and irrigated with treated wastewater: Oxygen content dynamics and crop response," Agricultural Water Management, Elsevier, vol. 97(3), pages 433-438, March.
    6. Aramyan, Lusine H. & Lansink, Alfons G.J.M. Oude & Verstegen, Jos A.A.M., 2007. "Factors underlying the investment decision in energy-saving systems in Dutch horticulture," Agricultural Systems, Elsevier, vol. 94(2), pages 520-527, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Terry & Goldsworthy, Mark & Chavan, Sachin & Liang, Weiguang & Maier, Chelsea & Ghannoum, Oula & Cazzonelli, Christopher I. & Tissue, David T. & Lan, Yi-Chen & Sethuvenkatraman, Subbu & Lin, Han , 2022. "A novel cover material improves cooling energy and fertigation efficiency for glasshouse eggplant production," Energy, Elsevier, vol. 251(C).
    2. Premaratne Samaranayake & Chelsea Maier & Sachin Chavan & Weiguang Liang & Zhong-Hua Chen & David T. Tissue & Yi-Chen Lan, 2021. "Energy Minimisation in a Protected Cropping Facility Using Multi-Temperature Acquisition Points and Control of Ventilation Settings," Energies, MDPI, vol. 14(19), pages 1-18, September.
    3. Anna-Maria N. Dimitropoulou & Vasileios Z. Maroulis & Eugenia N. Giannini, 2023. "A Simple and Effective Model for Predicting the Thermal Energy Requirements of Greenhouses in Europe," Energies, MDPI, vol. 16(19), pages 1-27, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Premaratne Samaranayake & Chelsea Maier & Sachin Chavan & Weiguang Liang & Zhong-Hua Chen & David T. Tissue & Yi-Chen Lan, 2021. "Energy Minimisation in a Protected Cropping Facility Using Multi-Temperature Acquisition Points and Control of Ventilation Settings," Energies, MDPI, vol. 14(19), pages 1-18, September.
    2. Morice R. O. Odhiambo & Adnan Abbas & Xiaochan Wang & Ehsan Elahi, 2020. "Thermo-Environmental Assessment of a Heated Venlo-Type Greenhouse in the Yangtze River Delta Region," Sustainability, MDPI, vol. 12(24), pages 1-34, December.
    3. Zhang, Menghang & Yan, Tingxiang & Wang, Wei & Jia, Xuexiu & Wang, Jin & Klemeš, Jiří Jaromír, 2022. "Energy-saving design and control strategy towards modern sustainable greenhouse: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    4. Yano, Akira & Cossu, Marco, 2019. "Energy sustainable greenhouse crop cultivation using photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 116-137.
    5. Ben-Noah, I. & Friedman, S.P., 2016. "Aeration of clayey soils by injecting air through subsurface drippers: Lysimetric and field experiments," Agricultural Water Management, Elsevier, vol. 176(C), pages 222-233.
    6. Gorjian, Shiva & Bousi, Erion & Özdemir, Özal Emre & Trommsdorff, Max & Kumar, Nallapaneni Manoj & Anand, Abhishek & Kant, Karunesh & Chopra, Shauhrat S., 2022. "Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    7. Lotte Yanore & Jaap Sok & Alfons Oude Lansink, 2024. "Do Dutch farmers invest in expansion despite increased policy uncertainty? A participatory Bayesian network approach," Agribusiness, John Wiley & Sons, Ltd., vol. 40(1), pages 93-115, January.
    8. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    9. Gloria Alexandra Ortiz Rocha & Maria Angelica Pichimata & Edwin Villagran, 2021. "Research on the Microclimate of Protected Agriculture Structures Using Numerical Simulation Tools: A Technical and Bibliometric Analysis as a Contribution to the Sustainability of Under-Cover Cropping," Sustainability, MDPI, vol. 13(18), pages 1-40, September.
    10. Hohfeld, Lena & Waibel, Hermann, 2013. "Investments of Rural Households in Northeast Thailand and the Future of Small Scale Farming," Quarterly Journal of International Agriculture, Humboldt-Universitaat zu Berlin, vol. 52(3), pages 1-20, August.
    11. Du, Ya-Dan & Niu, Wen-Quan & Gu, Xiao-Bo & Zhang, Qian & Cui, Bing-Jing & Zhao, Ying, 2018. "Crop yield and water use efficiency under aerated irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 210(C), pages 158-164.
    12. Dafni Despoina Avgoustaki & George Xydis, 2020. "Plant factories in the water-food-energy Nexus era: a systematic bibliographical review," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(2), pages 253-268, April.
    13. Fleiter, Tobias & Schleich, Joachim & Ravivanpong, Ployplearn, 2012. "Adoption of energy-efficiency measures in SMEs—An empirical analysis based on energy audit data from Germany," Energy Policy, Elsevier, vol. 51(C), pages 863-875.
    14. Marucci, Alvaro & Cappuccini, Andrea, 2016. "Dynamic photovoltaic greenhouse: Energy efficiency in clear sky conditions," Applied Energy, Elsevier, vol. 170(C), pages 362-376.
    15. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Khalifah, Zainab & Zakuan, Norhayati & Jusoh, Ahmad & Nor, Khalil Md & Khoshnoudi, Masoumeh, 2017. "A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 216-256.
    16. Ioana Moldovan (Tonea) & Ioana Beleiu, 2020. "An Analysis of Investment Decisions in Agribusiness," Book chapters-LUMEN Proceedings, in: Carmen NÄ‚STASE (ed.), 16th Economic International Conference NCOE 4.0 2020, edition 1, volume 13, chapter 18, pages 194-205, Editura Lumen.
    17. Tobias Fleitera & Joachim Schleich & Ployplearn Ravivanpong, 2012. "Adoption of energy-efficiency measures in SMEs - An empirical analysis based on energy audit data," Post-Print hal-00805748, HAL.
    18. James Bambara & Andreas K. Athienitis & Ursula Eicker, 2021. "Decarbonizing Local Mobility and Greenhouse Agriculture through Residential Building Energy Upgrades: A Case Study for Québec," Energies, MDPI, vol. 14(20), pages 1-31, October.
    19. Il-Seok Choi & Akhtar Hussain & Van-Hai Bui & Hak-Man Kim, 2018. "A Multi-Agent System-Based Approach for Optimal Operation of Building Microgrids with Rooftop Greenhouse," Energies, MDPI, vol. 11(7), pages 1-24, July.
    20. Bellassen Valentin & Drut Marion & Diallo Abdoul & Antonioli Federico & Donati Michele & Brečić Ružica & Ferrer-Pérez Hugo & Gauvrit Lisa & Hoang Viet & Nguyen An & Knutsen Steinnes Kamilla & Vittersø, 2021. "The Carbon and Land Footprint of Certified Food Products," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 19(2), pages 113-126, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4468-:d:406287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.