IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i11p2069-d235695.html
   My bibliography  Save this article

Direct Rebound Effect for Electricity Consumption of Urban Residents in China Based on the Spatial Spillover Effect

Author

Listed:
  • Ying Han

    (School of Business Administration, Northeastern University, Shenyang 110169, China)

  • Jianhua Shi

    (School of Business Administration, Northeastern University, Shenyang 110169, China)

  • Yuanfan Yang

    (School of Business Administration, Northeastern University, Shenyang 110169, China)

  • Yaxin Wang

    (School of Business Administration, Northeastern University, Shenyang 110169, China)

Abstract

Based on methods of price decomposition and spatial econometrics, this paper improves the model for calculating the direct energy rebound effect employing the panel data of China’s urban residents’ electricity consumption for an empirical analysis. Results show that the global spatial correlation of urban residents’ electricity consumption has a significant positive value. The direct rebound effect and its spillover effects are 37% and 13%, respectively. Due to the spatial spillover effects, the realization of energy-saving targets in the local region depends on the implementation effect of energy efficiency policies in the surrounding areas. However, the spatial spillover effect is low, and the direct rebound effect induced by the local region is still the dominant factor affecting the implementation of energy efficiency. The direct rebound effect for urban residents’ electricity consumption eliminating the spatial spillover effect does not show a significant downward trend. The main reason is that the rapid urbanization process at the current stage has caused a rigid residents’ electricity demand and large-scale marginal consumer groups, which offsets the inhibition effect of income growth on the direct rebound effect.

Suggested Citation

  • Ying Han & Jianhua Shi & Yuanfan Yang & Yaxin Wang, 2019. "Direct Rebound Effect for Electricity Consumption of Urban Residents in China Based on the Spatial Spillover Effect," Energies, MDPI, vol. 12(11), pages 1-16, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2069-:d:235695
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/11/2069/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/11/2069/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Llorca, Manuel & Jamasb, Tooraj, 2017. "Energy efficiency and rebound effect in European road freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 98-110.
    2. Madlener, R. & Alcott, B., 2009. "Energy rebound and economic growth: A review of the main issues and research needs," Energy, Elsevier, vol. 34(3), pages 370-376.
    3. Wang, Zhaohua & Lu, Milin & Wang, Jian-Cai, 2014. "Direct rebound effect on urban residential electricity use: An empirical study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 124-132.
    4. Lee, Lung-fei & Yu, Jihai, 2010. "Estimation of spatial autoregressive panel data models with fixed effects," Journal of Econometrics, Elsevier, vol. 154(2), pages 165-185, February.
    5. Lin, Boqiang & Liu, Xia, 2013. "Electricity tariff reform and rebound effect of residential electricity consumption in China," Energy, Elsevier, vol. 59(C), pages 240-247.
    6. Nesbakken, Runa, 2001. " Energy Consumption for Space Heating: A Discrete-Continuous Approach," Scandinavian Journal of Economics, Wiley Blackwell, vol. 103(1), pages 165-184, March.
    7. Freire-González, Jaume, 2011. "Methods to empirically estimate direct and indirect rebound effect of energy-saving technological changes in households," Ecological Modelling, Elsevier, vol. 223(1), pages 32-40.
    8. Freire-González, Jaume, 2017. "A new way to estimate the direct and indirect rebound effect and other rebound indicators," Energy, Elsevier, vol. 128(C), pages 394-402.
    9. Sorrell, Steve & Dimitropoulos, John, 2008. "The rebound effect: Microeconomic definitions, limitations and extensions," Ecological Economics, Elsevier, vol. 65(3), pages 636-649, April.
    10. Stapleton, Lee & Sorrell, Steve & Schwanen, Tim, 2016. "Estimating direct rebound effects for personal automotive travel in Great Britain," Energy Economics, Elsevier, vol. 54(C), pages 313-325.
    11. Peter M. Schwarz & Thomas N. Taylor, 1995. "Cold Hands, Warm Hearth? Climate, Net Takeback, and Household Comfort," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 41-54.
    12. Jin, Sang-Hyeon, 2007. "The effectiveness of energy efficiency improvement in a developing country: Rebound effect of residential electricity use in South Korea," Energy Policy, Elsevier, vol. 35(11), pages 5622-5629, November.
    13. Wei, Taoyuan, 2007. "Impact of energy efficiency gains on output and energy use with Cobb-Douglas production function," Energy Policy, Elsevier, vol. 35(4), pages 2023-2030, April.
    14. Ouyang, Jinlong & Long, Enshen & Hokao, Kazunori, 2010. "Rebound effect in Chinese household energy efficiency and solution for mitigating it," Energy, Elsevier, vol. 35(12), pages 5269-5276.
    15. Wang, Zhaohua & Lu, Milin, 2014. "An empirical study of direct rebound effect for road freight transport in China," Applied Energy, Elsevier, vol. 133(C), pages 274-281.
    16. Hymel, Kent M. & Small, Kenneth A., 2015. "The rebound effect for automobile travel: Asymmetric response to price changes and novel features of the 2000s," Energy Economics, Elsevier, vol. 49(C), pages 93-103.
    17. Zhang, Yue-Jun & Peng, Hua-Rong, 2017. "Exploring the direct rebound effect of residential electricity consumption: An empirical study in China," Applied Energy, Elsevier, vol. 196(C), pages 132-141.
    18. Saunders, Harry, 2013. "Is what we think of as “rebound” really just income effects in disguise?," Energy Policy, Elsevier, vol. 57(C), pages 308-317.
    19. Haas, Reinhard & Biermayr, Peter, 2000. "The rebound effect for space heating Empirical evidence from Austria," Energy Policy, Elsevier, vol. 28(6-7), pages 403-410, June.
    20. Jeroen Bergh, 2011. "Energy Conservation More Effective With Rebound Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(1), pages 43-58, January.
    21. Moshiri, Saeed & Aliyev, Kamil, 2017. "Rebound effect of efficiency improvement in passenger cars on gasoline consumption in Canada," Ecological Economics, Elsevier, vol. 131(C), pages 330-341.
    22. Saunders, Harry D., 2008. "Fuel conserving (and using) production functions," Energy Economics, Elsevier, vol. 30(5), pages 2184-2235, September.
    23. Paul E. Brockway & Harry Saunders & Matthew K. Heun & Timothy J. Foxon & Julia K. Steinberger & John R. Barrett & Steve Sorrell, 2017. "Energy Rebound as a Potential Threat to a Low-Carbon Future: Findings from a New Exergy-Based National-Level Rebound Approach," Energies, MDPI, vol. 10(1), pages 1-24, January.
    24. Wei, Taoyuan & Liu, Yang, 2019. "Estimation of resource-specific technological change," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 29-33.
    25. Sorrell, Steve & Dimitropoulos, John & Sommerville, Matt, 2009. "Empirical estimates of the direct rebound effect: A review," Energy Policy, Elsevier, vol. 37(4), pages 1356-1371, April.
    26. Berkhout, Peter H. G. & Muskens, Jos C. & W. Velthuijsen, Jan, 2000. "Defining the rebound effect," Energy Policy, Elsevier, vol. 28(6-7), pages 425-432, June.
    27. Lucas W. Davis, 2008. "Durable goods and residential demand for energy and water: evidence from a field trial," RAND Journal of Economics, RAND Corporation, vol. 39(2), pages 530-546, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Belaïd, Fateh & Youssef, Adel Ben & Lazaric, Nathalie, 2020. "Scrutinizing the direct rebound effect for French households using quantile regression and data from an original survey," Ecological Economics, Elsevier, vol. 176(C).
    2. Shi, Jian-hua & Han, Ying & Li, Xue-dong & Zhou, Jie-qi, 2022. "How does urbanization affect the direct rebound effect? Evidence from residential electricity consumption in China," Energy, Elsevier, vol. 239(PE).
    3. Taoyuan Wei & Xue Wang, 2020. "Rebound Effect from Income Savings Due to an Energy Efficiency Improvement by Households: An Input–Output Approach," Energies, MDPI, vol. 13(16), pages 1-10, August.
    4. Nikolaos Iliopoulos & Motoharu Onuki & Miguel Esteban, 2021. "Shedding Light on the Factors That Influence Residential Demand Response in Japan," Energies, MDPI, vol. 14(10), pages 1-23, May.
    5. Rishan Adha & Cheng-Yih Hong, 2021. "How Large the Direct Rebound Effect for Residential Electricity Consumption When the Artificial Neural Network Takes on the Role? A Taiwan Case Study of Household Electricity Consumption," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 354-364.
    6. Halvorsen, Bente & Larsen, Bodil Merethe, 2021. "Identifying drivers for the direct rebound when energy efficiency is unknown. The importance of substitution and scale effects," Energy, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Taeyoung & Kim, Jinsoo, 2019. "A new approach for assessing the macroeconomic growth energy rebound effect," Applied Energy, Elsevier, vol. 239(C), pages 192-200.
    2. Ouyang, Xiaoling & Yang, Yuchuan & Du, Kerui & Cheng, Zhenyu, 2022. "How does residential electricity consumption respond to electricity efficiency improvement? Evidence from 287 prefecture-level cities in China," Energy Policy, Elsevier, vol. 171(C).
    3. Shi, Jian-hua & Han, Ying & Li, Xue-dong & Zhou, Jie-qi, 2022. "How does urbanization affect the direct rebound effect? Evidence from residential electricity consumption in China," Energy, Elsevier, vol. 239(PE).
    4. Milin Lu & Zhaohua Wang, 2017. "Rebound effects for residential electricity use in urban China: an aggregation analysis based E-I-O and scenario simulation," Annals of Operations Research, Springer, vol. 255(1), pages 525-546, August.
    5. Martín Bordon Lesme & Jaume Freire-González & Emilio Padilla Rosa, 2020. "The Direct Rebound Effect of Electricity Energy Services in Spanish Households: Evidence from Error Correction Model and System GMM estimates," Working Papers wpdea2002, Department of Applied Economics at Universitat Autonoma of Barcelona.
    6. Liu, Jingru & Sun, Xin & Lu, Bin & Zhang, Yunkun & Sun, Rui, 2016. "The life cycle rebound effect of air-conditioner consumption in China," Applied Energy, Elsevier, vol. 184(C), pages 1026-1032.
    7. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    8. Li, Ke & Lin, Boqiang, 2015. "Heterogeneity in rebound effects: Estimated results and impact of China’s fossil-fuel subsidies," Applied Energy, Elsevier, vol. 149(C), pages 148-160.
    9. Wen, Fenghua & Ye, Zhengke & Yang, Huaidong & Li, Ke, 2018. "Exploring the rebound effect from the perspective of household: An analysis of China's provincial level," Energy Economics, Elsevier, vol. 75(C), pages 345-356.
    10. Lin, Boqiang & Zhu, Penghu, 2021. "Measurement of the direct rebound effect of residential electricity consumption: An empirical study based on the China family panel studies," Applied Energy, Elsevier, vol. 301(C).
    11. Thomas, Brinda A. & Azevedo, Inês L., 2013. "Estimating direct and indirect rebound effects for U.S. households with input–output analysis Part 1: Theoretical framework," Ecological Economics, Elsevier, vol. 86(C), pages 199-210.
    12. Li, Ke & Jiang, Zhujun, 2016. "The impacts of removing energy subsidies on economy-wide rebound effects in China: An input-output analysis," Energy Policy, Elsevier, vol. 98(C), pages 62-72.
    13. Broberg, Thomas & Berg, Charlotte & Samakovlis, Eva, 2015. "The economy-wide rebound effect from improved energy efficiency in Swedish industries–A general equilibrium analysis," Energy Policy, Elsevier, vol. 83(C), pages 26-37.
    14. Wang, Zhaohua & Han, Bai & Lu, Milin, 2016. "Measurement of energy rebound effect in households: Evidence from residential electricity consumption in Beijing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 852-861.
    15. Chen, Qian & Zha, Donglan & Wang, Lijun & Yang, Guanglei, 2022. "The direct CO2 rebound effect in households: Evidence from China's provinces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    16. Jafari, Mahboubeh & Stern, David I. & Bruns, Stephan B., 2022. "How large is the economy-wide rebound effect in middle income countries? Evidence from Iran," Ecological Economics, Elsevier, vol. 193(C).
    17. Yang, Lisha & Li, Zhi, 2017. "Technology advance and the carbon dioxide emission in China – Empirical research based on the rebound effect," Energy Policy, Elsevier, vol. 101(C), pages 150-161.
    18. Figge, Frank & Thorpe, Andrea Stevenson, 2019. "The symbiotic rebound effect in the circular economy," Ecological Economics, Elsevier, vol. 163(C), pages 61-69.
    19. Fei, Rilong & Wang, Haolin & Wen, Zihao & Yuan, Zhen & Yuan, Kaihua & Chunga, Joseph, 2021. "Tracking factor substitution and the rebound effect of China’s agricultural energy consumption: A new research perspective from asymmetric response," Energy, Elsevier, vol. 216(C).
    20. Zhang, Yue-Jun & Liu, Zhao & Qin, Chang-Xiong & Tan, Tai-De, 2017. "The direct and indirect CO2 rebound effect for private cars in China," Energy Policy, Elsevier, vol. 100(C), pages 149-161.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2069-:d:235695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.