IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v222y2021ics0360544221001286.html
   My bibliography  Save this article

Identifying drivers for the direct rebound when energy efficiency is unknown. The importance of substitution and scale effects

Author

Listed:
  • Halvorsen, Bente
  • Larsen, Bodil Merethe

Abstract

The cost reduction resulting from energy efficiency initiatives may induce behavioural changes, which may undermine the energy savings effort embedded in the initiative (referred to as rebound effects). We develop a novel empirical method for illustrating contributions to the direct rebound for cases where the energy efficiency of the equipment is unobservable. Our focus is on substitution and scale effects in cases where more than one type of equipment may be used to produce the same service. We apply the model on a random sample of 1111 households from the Norwegian Survey of Consumer Expenditure for the year 2009 to identify components of the energy savings and rebound effects of household heat pumps. The results show that the electricity savings are completely offset by the rebound effects due to changes in demand, including changes in the mix of energy goods consumed and increased service production. However, the overall energy efficiency has risen, and total energy consumption is reduced.

Suggested Citation

  • Halvorsen, Bente & Larsen, Bodil Merethe, 2021. "Identifying drivers for the direct rebound when energy efficiency is unknown. The importance of substitution and scale effects," Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:energy:v:222:y:2021:i:c:s0360544221001286
    DOI: 10.1016/j.energy.2021.119879
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221001286
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.119879?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Browning, Martin & Meghir, Costas, 1991. "The Effects of Male and Female Labor Supply on Commodity Demands," Econometrica, Econometric Society, vol. 59(4), pages 925-951, July.
    2. Garcia, Jaume & Labeaga, Jose M, 1996. "Alternative Approaches to Modelling Zero Expenditure: An Application to Spanish Demand for Tobacco," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 58(3), pages 489-506, August.
    3. Robert A. Pollak, 1969. "Conditional Demand Functions and Consumption Theory," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 83(1), pages 60-78.
    4. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    5. Sorrell, Steve, 2009. "Jevons' Paradox revisited: The evidence for backfire from improved energy efficiency," Energy Policy, Elsevier, vol. 37(4), pages 1456-1469, April.
    6. Manuel Frondel & Jorg Peters & Colin Vance, 2008. "Identifying the Rebound: Evidence from a German Household Panel," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 145-164.
    7. Nathan W. Chan & Kenneth Gillingham, 2015. "The Microeconomic Theory of the Rebound Effect and Its Welfare Implications," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 133-159.
    8. Dubin, Jeffrey A & McFadden, Daniel L, 1984. "An Econometric Analysis of Residential Electric Appliance Holdings and Consumption," Econometrica, Econometric Society, vol. 52(2), pages 345-362, March.
    9. Cragg, John G, 1971. "Some Statistical Models for Limited Dependent Variables with Application to the Demand for Durable Goods," Econometrica, Econometric Society, vol. 39(5), pages 829-844, September.
    10. Ying Han & Jianhua Shi & Yuanfan Yang & Yaxin Wang, 2019. "Direct Rebound Effect for Electricity Consumption of Urban Residents in China Based on the Spatial Spillover Effect," Energies, MDPI, vol. 12(11), pages 1-16, May.
    11. Zhang, Yue-Jun & Peng, Hua-Rong, 2017. "Exploring the direct rebound effect of residential electricity consumption: An empirical study in China," Applied Energy, Elsevier, vol. 196(C), pages 132-141.
    12. Lucas W. Davis & Alan Fuchs & Paul Gertler, 2014. "Cash for Coolers: Evaluating a Large-Scale Appliance Replacement Program in Mexico," American Economic Journal: Economic Policy, American Economic Association, vol. 6(4), pages 207-238, November.
    13. J. Daniel Khazzoom, 1980. "Economic Implications of Mandated Efficiency in Standards for Household Appliances," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 21-40.
    14. Sorrell, Steve & Dimitropoulos, John & Sommerville, Matt, 2009. "Empirical estimates of the direct rebound effect: A review," Energy Policy, Elsevier, vol. 37(4), pages 1356-1371, April.
    15. Belaïd, Fateh & Bakaloglou, Salomé & Roubaud, David, 2018. "Direct rebound effect of residential gas demand: Empirical evidence from France," Energy Policy, Elsevier, vol. 115(C), pages 23-31.
    16. Berkhout, Peter H. G. & Muskens, Jos C. & W. Velthuijsen, Jan, 2000. "Defining the rebound effect," Energy Policy, Elsevier, vol. 28(6-7), pages 425-432, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Shulei & Wang, Ping & Chen, Boyang & Fan, Wei, 2022. "Decoupling and decomposition analysis of CO2 emissions from government spending in China," Energy, Elsevier, vol. 243(C).
    2. Shi, Jian-hua & Han, Ying & Li, Xue-dong & Zhou, Jie-qi, 2022. "How does urbanization affect the direct rebound effect? Evidence from residential electricity consumption in China," Energy, Elsevier, vol. 239(PE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belaïd, Fateh & Youssef, Adel Ben & Lazaric, Nathalie, 2020. "Scrutinizing the direct rebound effect for French households using quantile regression and data from an original survey," Ecological Economics, Elsevier, vol. 176(C).
    2. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    3. Benjamin Volland, 2016. "Efficiency in Domestic Space Heating: An Estimation of the Direct Rebound Effect for Domestic Heating in the U.S," IRENE Working Papers 16-01, IRENE Institute of Economic Research.
    4. Martín Bordon Lesme & Jaume Freire-González & Emilio Padilla Rosa, 2020. "The Direct Rebound Effect of Electricity Energy Services in Spanish Households: Evidence from Error Correction Model and System GMM estimates," Working Papers wpdea2002, Department of Applied Economics at Universitat Autonoma of Barcelona.
    5. Stela Rubínová, 2011. "Reakce poptávky domácností po energii na zvyšování energetické účinnosti: teorie a její důsledky pro konstrukci empiricky ověřitelných modelů [Reaction of Household Energy Demand to Improvements in," Politická ekonomie, Prague University of Economics and Business, vol. 2011(3), pages 359-378.
    6. Shi, Jian-hua & Han, Ying & Li, Xue-dong & Zhou, Jie-qi, 2022. "How does urbanization affect the direct rebound effect? Evidence from residential electricity consumption in China," Energy, Elsevier, vol. 239(PE).
    7. Du, Qiang & Han, Xiao & Li, Yi & Li, Zhe & Xia, Bo & Guo, Xiqian, 2021. "The energy rebound effect of residential buildings: Evidence from urban and rural areas in China," Energy Policy, Elsevier, vol. 153(C).
    8. repec:hal:gemwpa:hal-00991732 is not listed on IDEAS
    9. Mills, Bradford & Schleich, Joachim, 2014. "Household transitions to energy efficient lighting," Energy Economics, Elsevier, vol. 46(C), pages 151-160.
    10. Wen, Fenghua & Ye, Zhengke & Yang, Huaidong & Li, Ke, 2018. "Exploring the rebound effect from the perspective of household: An analysis of China's provincial level," Energy Economics, Elsevier, vol. 75(C), pages 345-356.
    11. Freire-González, Jaume, 2011. "Methods to empirically estimate direct and indirect rebound effect of energy-saving technological changes in households," Ecological Modelling, Elsevier, vol. 223(1), pages 32-40.
    12. Toroghi, Shahaboddin H. & Oliver, Matthew E., 2019. "Framework for estimation of the direct rebound effect for residential photovoltaic systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    13. Thomas, Brinda A. & Azevedo, Inês L., 2013. "Estimating direct and indirect rebound effects for U.S. households with input–output analysis Part 1: Theoretical framework," Ecological Economics, Elsevier, vol. 86(C), pages 199-210.
    14. Wang, Jiayu & Yu, Shuao & Liu, Tiansen, 2021. "A theoretical analysis of the direct rebound effect caused by energy efficiency improvement of private consumers," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 171-181.
    15. Manuel Frondel & Colin Vance, 2018. "Drivers’ response to fuel taxes and efficiency standards: evidence from Germany," Transportation, Springer, vol. 45(3), pages 989-1001, May.
    16. Li, Guohao & Niu, Miaomiao & Xiao, Jin & Wu, Jiaqian & Li, Jinkai, 2023. "The rebound effect of decarbonization in China’s power sector under the carbon trading scheme," Energy Policy, Elsevier, vol. 177(C).
    17. Zha, Donglan & Chen, Qian & Wang, Lijun, 2022. "Exploring carbon rebound effects in Chinese households’ consumption: A simulation analysis based on a multi-regional input–output framework," Applied Energy, Elsevier, vol. 313(C).
    18. Wang, Zhaohua & Lu, Milin & Wang, Jian-Cai, 2014. "Direct rebound effect on urban residential electricity use: An empirical study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 124-132.
    19. Rishan Adha & Cheng-Yih Hong, 2021. "How Large the Direct Rebound Effect for Residential Electricity Consumption When the Artificial Neural Network Takes on the Role? A Taiwan Case Study of Household Electricity Consumption," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 354-364.
    20. Lecca, Patrizio & McGregor, Peter G. & Swales, J. Kim & Turner, Karen, 2014. "The added value from a general equilibrium analysis of increased efficiency in household energy use," Ecological Economics, Elsevier, vol. 100(C), pages 51-62.
    21. Jin, Taeyoung & Kim, Jinsoo, 2019. "A new approach for assessing the macroeconomic growth energy rebound effect," Applied Energy, Elsevier, vol. 239(C), pages 192-200.

    More about this item

    Keywords

    Energy efficiency; Heat pump; Household energy consumption; Rebound effect;
    All these keywords.

    JEL classification:

    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C34 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Truncated and Censored Models; Switching Regression Models
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • D13 - Microeconomics - - Household Behavior - - - Household Production and Intrahouse Allocation
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:222:y:2021:i:c:s0360544221001286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.