IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v137y2020ics1366554519315169.html
   My bibliography  Save this article

Reinforcement learning framework for freight demand forecasting to support operational planning decisions

Author

Listed:
  • Al Hajj Hassan, Lama
  • Mahmassani, Hani S.
  • Chen, Ying

Abstract

Freight forecasting is essential for managing, planning operating and optimizing the use of resources. Multiple market factors contribute to the highly variable nature of freight flows, which calls for adaptive and responsive forecasting models. This paper presents a demand forecasting methodology that supports freight operation planning over short to long term horizons. The method combines time series models and machine learning algorithms in a Reinforcement Learning framework applied over a rolling horizon. The objective is to develop an efficient method that reduces the prediction error by taking full advantage of the traditional time series models and machine learning models. In a case study applied to container shipment data for a US intermodal company, the approach succeeded in reducing the forecast error margin. It also allowed predictions to closely follow recent trends and fluctuations in the market while minimizing the need for user intervention. The results indicate that the proposed approach is an effective method to predict freight demand. In addition to clustering and Reinforcement Learning, a method for converting monthly forecasts to long-term weekly forecasts was developed and tested. The results suggest that these monthly-to-weekly long-term forecasts outperform the direct long term forecasts generated through typical time series approaches.

Suggested Citation

  • Al Hajj Hassan, Lama & Mahmassani, Hani S. & Chen, Ying, 2020. "Reinforcement learning framework for freight demand forecasting to support operational planning decisions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 137(C).
  • Handle: RePEc:eee:transe:v:137:y:2020:i:c:s1366554519315169
    DOI: 10.1016/j.tre.2020.101926
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554519315169
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2020.101926?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    2. Joseph Chow & Choon Yang & Amelia Regan, 2010. "State-of-the art of freight forecast modeling: lessons learned and the road ahead," Transportation, Springer, vol. 37(6), pages 1011-1030, November.
    3. Weigang, Li & de Souza, Bueno Borges & Crespo, Antonio Marcio Ferreira & Alves, Daniela Pereira, 2008. "Decision support system in tactical air traffic flow management for air traffic flow controllers," Journal of Air Transport Management, Elsevier, vol. 14(6), pages 329-336.
    4. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
    5. Victor M. Guerrero & J. Alan Elizondo, 1997. "Forecasting a Cumulative Variable Using Its Partially Accumulated Data," Management Science, INFORMS, vol. 43(6), pages 879-889, June.
    6. José Holguín-Veras & Gopal Patil, 2008. "A Multicommodity Integrated Freight Origin–destination Synthesis Model," Networks and Spatial Economics, Springer, vol. 8(2), pages 309-326, September.
    7. Agostino Nuzzolo & Pierluigi Coppola & Antonio Comi, 2013. "Freight Transport Modeling: Review And Future Challenges," Articles, International Journal of Transport Economics, vol. 40(2).
    8. Petris, Giovanni & Petrone, Sonia, 2011. "State Space Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 41(i04).
    9. Yang, Yuhong, 2004. "Combining Forecasting Procedures: Some Theoretical Results," Econometric Theory, Cambridge University Press, vol. 20(1), pages 176-222, February.
    10. Hyndman, Rob J. & Billah, Baki, 2003. "Unmasking the Theta method," International Journal of Forecasting, Elsevier, vol. 19(2), pages 287-290.
    11. Nick Feltovich, 2000. "Reinforcement-Based vs. Belief-Based Learning Models in Experimental Asymmetric-Information," Econometrica, Econometric Society, vol. 68(3), pages 605-642, May.
    12. Garrido, Rodrigo A. & Mahmassani, Hani S., 2000. "Forecasting freight transportation demand with the space-time multinomial probit model," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 403-418, June.
    13. William P. Cleveland & Michael R. Grupe, 1981. "Modeling time series when calendar effects are present," Special Studies Papers 162, Board of Governors of the Federal Reserve System (U.S.).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Yitao & Jia, Bin & Yan, Xiao-Yong & Chen, Yan & Song, Dongdong & Zhi, Danyue & Wang, Yiyun & Gao, Ziyou, 2023. "Estimating intercity heavy truck mobility flows using the deep gravity framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    2. Baller, Reinhard & Fontaine, Pirmin & Minner, Stefan & Lai, Zhen, 2022. "Optimizing automotive inbound logistics: A mixed-integer linear programming approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    3. Yan, Yimo & Chow, Andy H.F. & Ho, Chin Pang & Kuo, Yong-Hong & Wu, Qihao & Ying, Chengshuo, 2022. "Reinforcement learning for logistics and supply chain management: Methodologies, state of the art, and future opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 162(C).
    4. Sowjanya Dhulipala & Gopal R. Patil, 2023. "Regional freight generation and spatial interactions in developing regions using secondary data," Transportation, Springer, vol. 50(3), pages 773-810, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 203, Economics Division, School of Social Sciences, University of Southampton.
    2. Anthony Ziegelmeyer & Frédéric Koessler & Kene Boun My & Laurent Denant-Boèmont, 2008. "Road Traffic Congestion and Public Information: An Experimental Investigation," Journal of Transport Economics and Policy, University of Bath, vol. 42(1), pages 43-82, January.
    3. Marco LiCalzi & Roland Mühlenbernd, 2022. "Feature-weighted categorized play across symmetric games," Experimental Economics, Springer;Economic Science Association, vol. 25(3), pages 1052-1078, June.
    4. Ed Hopkins, 2002. "Two Competing Models of How People Learn in Games," Econometrica, Econometric Society, vol. 70(6), pages 2141-2166, November.
    5. Yoella Bereby-Meyer & Alvin E. Roth, 2006. "The Speed of Learning in Noisy Games: Partial Reinforcement and the Sustainability of Cooperation," American Economic Review, American Economic Association, vol. 96(4), pages 1029-1042, September.
    6. Masiliūnas, Aidas, 2023. "Learning in rent-seeking contests with payoff risk and foregone payoff information," Games and Economic Behavior, Elsevier, vol. 140(C), pages 50-72.
    7. Laurent Denant-Boemont & Olivier L’Haridon, 2013. "La rationalité à l'épreuve de l'économie comportementale," Revue française d'économie, Presses de Sciences-Po, vol. 0(2), pages 35-89.
    8. David Cooper & Nick Feltovich & Alvin Roth & Rami Zwick, 2003. "Relative versus Absolute Speed of Adjustment in Strategic Environments: Responder Behavior in Ultimatum Games," Experimental Economics, Springer;Economic Science Association, vol. 6(2), pages 181-207, October.
    9. Aurélien Nioche & Basile Garcia & Germain Lefebvre & Thomas Boraud & Nicolas P. Rougier & Sacha Bourgeois-Gironde, 2019. "Coordination over a unique medium of exchange under information scarcity," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-11, December.
    10. Haruvy, Ernan & Roth, Alvin E. & Unver, M. Utku, 2006. "The dynamics of law clerk matching: An experimental and computational investigation of proposals for reform of the market," Journal of Economic Dynamics and Control, Elsevier, vol. 30(3), pages 457-486, March.
    11. Rapoport, Amnon & Stein, William E. & Parco, James E. & Nicholas, Thomas E., 2003. "Equilibrium play and adaptive learning in a three-person centipede game," Games and Economic Behavior, Elsevier, vol. 43(2), pages 239-265, May.
    12. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 0203, Economics Division, School of Social Sciences, University of Southampton.
    13. Cooper, David J. & Stockman, Carol Kraker, 2002. "Fairness and learning: an experimental examination," Games and Economic Behavior, Elsevier, vol. 41(1), pages 26-45, October.
    14. Gunnthorsdottir, Anna & Rapoport, Amnon, 2006. "Embedding social dilemmas in intergroup competition reduces free-riding," Organizational Behavior and Human Decision Processes, Elsevier, vol. 101(2), pages 184-199, November.
    15. Duffy, John, 2006. "Agent-Based Models and Human Subject Experiments," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 19, pages 949-1011, Elsevier.
    16. Atanasios Mitropoulos, 2001. "On the Measurement of the Predictive Success of Learning Theories in Repeated Games," Experimental 0110001, University Library of Munich, Germany.
    17. Shafran, Aric P., 2012. "Learning in games with risky payoffs," Games and Economic Behavior, Elsevier, vol. 75(1), pages 354-371.
    18. Ido Erev & Alvin Roth & Robert Slonim & Greg Barron, 2007. "Learning and equilibrium as useful approximations: Accuracy of prediction on randomly selected constant sum games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 33(1), pages 29-51, October.
    19. Jaromír Kovářík & Friederike Mengel & José Gabriel Romero, 2018. "Learning in network games," Quantitative Economics, Econometric Society, vol. 9(1), pages 85-139, March.
      • Kovarik, Jaromir & Mengel, Friederike & Romero, José Gabriel, 2012. "Learning in Network Games," IKERLANAK http://www-fae1-eao1-ehu-, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
    20. Wen, Yuanji, 2018. "Voluntary information acquisition in an asymmetric-Information game:comparing learning theories in the laboratory," Journal of Economic Behavior & Organization, Elsevier, vol. 150(C), pages 202-219.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:137:y:2020:i:c:s1366554519315169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.