IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v43y2009i8-9p813-820.html
   My bibliography  Save this article

The marginal social cost of headway for a scheduled service

Author

Listed:
  • Fosgerau, Mogens

Abstract

This brief paper derives the marginal social cost of headway for a scheduled service, i.e. the cost for users of marginal increases to the time interval between departures. In brief we may call it the value of headway in analogy with the value of travel time and the value of reliability. Users have waiting time costs as well as schedule delay costs measured relative to their desired time of arrival at the destination. They may either arrive at the station to choose just the next departure or they may plan for a specific departure in which case they incur also a planning cost. Then planning for a specific departure is costly but becomes more attractive at longer headways. Simple expressions for the user cost result. In particular, the marginal cost of headway is large at short headways and smaller at long headways. The difference in marginal costs is the value of time multiplied by half the headway.

Suggested Citation

  • Fosgerau, Mogens, 2009. "The marginal social cost of headway for a scheduled service," Transportation Research Part B: Methodological, Elsevier, vol. 43(8-9), pages 813-820, September.
  • Handle: RePEc:eee:transb:v:43:y:2009:i:8-9:p:813-820
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(09)00034-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Palma, André & Lindsey, Robin, 2001. "Optimal timetables for public transportation," Transportation Research Part B: Methodological, Elsevier, vol. 35(8), pages 789-813, September.
    2. Mohring, Herbert, 1972. "Optimization and Scale Economies in Urban Bus Transportation," American Economic Review, American Economic Association, vol. 62(4), pages 591-604, September.
    3. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1993. "A Structural Model of Peak-Period Congestion: A Traffic Bottleneck with Elastic Demand," American Economic Review, American Economic Association, vol. 83(1), pages 161-179, March.
    4. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    5. Peter Tisato, 1991. "Impact of a Cost Minimisation User Cost Model on Public Transport Subsidy," School of Economics and Public Policy Working Papers 1991-05, University of Adelaide, School of Economics and Public Policy.
    6. Bates, John & Polak, John & Jones, Peter & Cook, Andrew, 0. "The valuation of reliability for personal travel," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 37(2-3), pages 191-229, April.
    7. Panzar, John C, 1979. "Equilibrium and Welfare in Unregulated Airline Markets," American Economic Review, American Economic Association, vol. 69(2), pages 92-95, May.
    8. Fosgerau, Mogens & Karlström, Anders, 2010. "The value of reliability," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 38-49, January.
    9. Small, Kenneth A, 1982. "The Scheduling of Consumer Activities: Work Trips," American Economic Review, American Economic Association, vol. 72(3), pages 467-479, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soza-Parra, Jaime & Raveau, Sebastián & Muñoz, Juan Carlos, 2021. "Travel preferences of public transport users under uneven headways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 61-75.
    2. Paul Koster & Eric Pels & Erik Verhoef, 2016. "The User Costs of Air Travel Delay Variability," Transportation Science, INFORMS, vol. 50(1), pages 120-131, February.
    3. Benezech, Vincent & Coulombel, Nicolas, 2013. "The value of service reliability," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 1-15.
    4. Raphaël Lamotte & André de Palma & Nikolas Geroliminis, 2016. "Sharing the road: the economics of autonomous vehicles," Working Papers hal-01281425, HAL.
    5. Mark G. Lijesen, 2014. "Optimal Traveler Responses to Stochastic Delays in Public Transport," Transportation Science, INFORMS, vol. 48(2), pages 256-264, May.
    6. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    7. Lamotte, Raphaël & de Palma, André & Geroliminis, Nikolas, 2017. "On the use of reservation-based autonomous vehicles for demand management," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 205-227.
    8. Yin-Yen Tseng & Piet Rietveld & Erik Verhoef, 2012. "Unreliable trains and induced rescheduling: implications for cost-benefit analysis," Transportation, Springer, vol. 39(2), pages 387-407, March.
    9. André de Palma & Mogens Fosgerau, 2011. "Dynamic Traffic Modeling," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 9, Edward Elgar Publishing.
    10. De Borger, Bruno & Fosgerau, Mogens, 2012. "Information provision by regulated public transport companies," Transportation Research Part B: Methodological, Elsevier, vol. 46(4), pages 492-510.
    11. Hjorth, Katrine & Börjesson, Maria & Engelson, Leonid & Fosgerau, Mogens, 2015. "Estimating exponential scheduling preferences," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 230-251.
    12. Zhaoqi Zang & Xiangdong Xu & Kai Qu & Ruiya Chen & Anthony Chen, 2022. "Travel time reliability in transportation networks: A review of methodological developments," Papers 2206.12696, arXiv.org, revised Jul 2022.
    13. André de Palma & Mogens Fosgerau, 2010. "Dynamic and Static congestion models: A review," Working Papers hal-00539166, HAL.
    14. Piet Rietveld, 2011. "The Economics of Information in Transport," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 24, Edward Elgar Publishing.
    15. Fosgerau, Mogens & Engelson, Leonid, 2011. "The value of travel time variance," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 1-8, January.
    16. Díez-Gutiérrez, María & Tørset, Trude, 2019. "Perception of inconvenience costs: Evidence from seven ferry services in Norway," Transport Policy, Elsevier, vol. 77(C), pages 58-67.
    17. Juan Mesa & Francisco Ortega & Miguel Pozo, 2014. "Locating optimal timetables and vehicle schedules in a transit line," Annals of Operations Research, Springer, vol. 222(1), pages 439-455, November.
    18. Jørgensen, Finn & Solvoll, Gisle, 2018. "Determining optimal frequency at ferry crossings," Transport Policy, Elsevier, vol. 63(C), pages 200-208.
    19. Høyem, Harald & Odeck, James, 2020. "Optimal public transit frequency under stochastic demand and fixed vehicle size: Application in the Norwegian car ferry sector," Research in Transportation Economics, Elsevier, vol. 82(C).
    20. Nicolas Coulombel & Guillaume Monchambert, 2019. "Congestion, diseconomies of scale and subsidies in urban public transportation," Working Papers hal-02373768, HAL.
    21. Coulombel, Nicolas & Monchambert, Guillaume, 2023. "Diseconomies of scale and subsidies in urban public transportation," Journal of Public Economics, Elsevier, vol. 223(C).
    22. Bernal, Margarita & Welch, Eric W. & Sriraj, P.S., 2016. "The effect of slow zones on ridership: An analysis of the Chicago Transit Authority “El” Blue Line," Transportation Research Part A: Policy and Practice, Elsevier, vol. 87(C), pages 11-21.
    23. Høyem, Harald, 2022. "Public transport frequency and risk-taking behavior," Economics of Transportation, Elsevier, vol. 30(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carrion, Carlos & Levinson, David, 2012. "Value of travel time reliability: A review of current evidence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 720-741.
    2. Yin-Yen Tseng & Piet Rietveld & Erik Verhoef, 2012. "Unreliable trains and induced rescheduling: implications for cost-benefit analysis," Transportation, Springer, vol. 39(2), pages 387-407, March.
    3. Engelson, Leonid & Fosgerau, Mogens, 2011. "Additive measures of travel time variability," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1560-1571.
    4. De Borger, Bruno & Fosgerau, Mogens, 2012. "Information provision by regulated public transport companies," Transportation Research Part B: Methodological, Elsevier, vol. 46(4), pages 492-510.
    5. Monchambert, Guillaume & de Palma, André, 2014. "Public transport reliability and commuter strategy," Journal of Urban Economics, Elsevier, vol. 81(C), pages 14-29.
    6. Raux, Charles & Souche, Stéphanie & Pons, Damien, 2012. "The efficiency of congestion charging: Some lessons from cost–benefit analyses," Research in Transportation Economics, Elsevier, vol. 36(1), pages 85-92.
    7. Fosgerau, Mogens & Engelson, Leonid, 2011. "The value of travel time variance," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 1-8, January.
    8. repec:hal:wpaper:hal-00827972 is not listed on IDEAS
    9. Nicolas Coulombel & André de Palma, 2014. "The marginal social cost of travel time variability," Post-Print hal-01100105, HAL.
    10. Mogens Fosgerau & Kurt Van Dender, 2013. "Road pricing with complications," Transportation, Springer, vol. 40(3), pages 479-503, May.
    11. Paul Koster & Eric Pels & Erik Verhoef, 2016. "The User Costs of Air Travel Delay Variability," Transportation Science, INFORMS, vol. 50(1), pages 120-131, February.
    12. Li, Baibing, 2019. "Measuring travel time reliability and risk: A nonparametric approach," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 152-171.
    13. Börjesson, Maria & Eliasson, Jonas & Franklin, Joel, 2012. "Valuations of travel time variability in scheduling versus mean-variance models," Working papers in Transport Economics 2012:2, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    14. Xiao, Yu & Fukuda, Daisuke, 2015. "On the cost of misperceived travel time variability," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 96-112.
    15. Kenneth Small, 2015. "The Bottleneck Model: An Assessment and Interpretation," Working Papers 141506, University of California-Irvine, Department of Economics.
    16. Soriguera, Francesc, 2014. "On the value of highway travel time information systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 294-310.
    17. Wang, Qian & Sundberg, Marcus & Karlström, Anders, 2013. "Scheduling choices under rank dependent utility maximization," Working papers in Transport Economics 2013:16, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    18. André de Palma & Mogens Fosgerau, 2011. "Dynamic Traffic Modeling," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 9, Edward Elgar Publishing.
    19. Hjorth, Katrine & Börjesson, Maria & Engelson, Leonid & Fosgerau, Mogens, 2015. "Estimating exponential scheduling preferences," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 230-251.
    20. Xiao, Yu & Coulombel, Nicolas & Palma, André de, 2017. "The valuation of travel time reliability: does congestion matter?," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 113-141.
    21. de Palma, André & Ordás Criado, Carlos & Randrianarisoa, Laingo M., 2018. "When Hotelling meets Vickrey. Service timing and spatial asymmetry in the airline industry," Journal of Urban Economics, Elsevier, vol. 105(C), pages 88-106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:43:y:2009:i:8-9:p:813-820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.