IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v133y2020icp21-37.html
   My bibliography  Save this article

Investigating high-speed rail construction's support to county level regional development in China: An eigenvector based spatial filtering panel data analysis

Author

Listed:
  • Yu, Danlin
  • Murakami, Daisuke
  • Zhang, Yaojun
  • Wu, Xiwei
  • Li, Ding
  • Wang, Xiaoxi
  • Li, Guangdong

Abstract

The construction of high-speed rail in China was initially a direct response to the increasing demand of up-to-date infrastructure. It is commonly understood that the construction of HSR has significant wider economic impact on local development. The benefits of HSR are represented by the accessibility to the HSR stations. Our study defines accessibility to HSR with a simple distance measure and a transportation network measure that considers travel from the center of the county through different grades of roads to the nearest HSR stations. For better understanding, we estimate both global and local (i.e., location-specific) impacts from HSR, using per capital GDP as a representation of the wider economic impact. With access to a panel dataset from 2008 to 2015 of regional socioeconomic indicators at the county-level units in China, the current study employs an eigenvector based spatial filtering (ESF) approach with and without spatially varying coefficients in an attempt to establish potential global and local relationships between HSR accessibility and county-level regional development. The analysis result suggests that it is likely that HSR accessibility might significantly contribute to regional development. A 10% decrease of the travel time to the nearest HSR station could bring about 0.44% (locally ranging from 0.28% to 3.1%) increase in local GDP per capita at the county level, ceteris paribus. The panel analysis suggests that the continued development of HSR construction in China will have long-term and sustainable support to local economic development. This is especially important to the relatively underdeveloped regions in the North and West China.

Suggested Citation

  • Yu, Danlin & Murakami, Daisuke & Zhang, Yaojun & Wu, Xiwei & Li, Ding & Wang, Xiaoxi & Li, Guangdong, 2020. "Investigating high-speed rail construction's support to county level regional development in China: An eigenvector based spatial filtering panel data analysis," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 21-37.
  • Handle: RePEc:eee:transb:v:133:y:2020:i:c:p:21-37
    DOI: 10.1016/j.trb.2019.12.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261519308483
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2019.12.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Annekatrin Niebuhr & Nadia Granato & Anette Haas & Silke Hamann, 2012. "Does Labour Mobility Reduce Disparities between Regional Labour Markets in Germany?," Regional Studies, Taylor & Francis Journals, vol. 46(7), pages 841-858, September.
    2. Roberto Patuelli & Norbert Schanne & Daniel A. Griffith & Peter Nijkamp, 2012. "Persistence Of Regional Unemployment: Application Of A Spatial Filtering Approach To Local Labor Markets In Germany," Journal of Regional Science, Wiley Blackwell, vol. 52(2), pages 300-323, May.
    3. Wang, Kun & Xia, Wenyi & Zhang, Anming, 2017. "Should China further expand its high-speed rail network? Consider the low-cost carrier factor," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 105-120.
    4. Vickerman, Roger, 2018. "Can high-speed rail have a transformative effect on the economy?," Transport Policy, Elsevier, vol. 62(C), pages 31-37.
    5. Masahisa Fujita & Paul Krugman & Anthony J. Venables, 2001. "The Spatial Economy: Cities, Regions, and International Trade," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262561476, December.
    6. Cai, Ruohong & Yu, Danlin & Oppenheimer, Michael, 2014. "Estimating the Spatially Varying Responses of Corn Yields toWeather Variations using GeographicallyWeighted Panel Regression," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 39(2), pages 1-23.
    7. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    8. Jia, Shanming & Zhou, Chunyu & Qin, Chenglin, 2017. "No difference in effect of high-speed rail on regional economic growth based on match effect perspective?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 144-157.
    9. Xueqiao Yu & Maoxiang Lang & Yang Gao & Kai Wang & Ching-Hsia Su & Sang-Bing Tsai & Mingkun Huo & Xiao Yu & Shiqi Li, 2018. "An Empirical Study on the Design of China High-Speed Rail Express Train Operation Plan—From a Sustainable Transport Perspective," Sustainability, MDPI, vol. 10(7), pages 1-19, July.
    10. Kim, Hyojin & Sultana, Selima, 2015. "The impacts of high-speed rail extensions on accessibility and spatial equity changes in South Korea from 2004 to 2018," Journal of Transport Geography, Elsevier, vol. 45(C), pages 48-61.
    11. Anselin, Luc & Bera, Anil K. & Florax, Raymond & Yoon, Mann J., 1996. "Simple diagnostic tests for spatial dependence," Regional Science and Urban Economics, Elsevier, vol. 26(1), pages 77-104, February.
    12. Gabriel M Ahlfeldt & Arne Feddersen, 2018. "From periphery to core: measuring agglomeration effects using high-speed rail," Journal of Economic Geography, Oxford University Press, vol. 18(2), pages 355-390.
    13. Hangtian Xu & Hao Zhou & Liang Liang, 2016. "The Locational Dynamics Of Manufacturing In China'S Counties: Influence Of Expressway Investment," Journal of Regional Science, Wiley Blackwell, vol. 56(3), pages 522-543, June.
    14. Kim, Hyojin & Sultana, Selima & Weber, Joe, 2018. "A geographic assessment of the economic development impact of Korean high-speed rail stations," Transport Policy, Elsevier, vol. 66(C), pages 127-137.
    15. Zhenhua Chen & Kingsley E. Haynes, 2015. "Impact of high-speed rail on international tourism demand in China," Applied Economics Letters, Taylor & Francis Journals, vol. 22(1), pages 57-60, January.
    16. Meng, Xuechen & Lin, Shanlang & Zhu, Xiaochuan, 2018. "The resource redistribution effect of high-speed rail stations on the economic growth of neighbouring regions: Evidence from China," Transport Policy, Elsevier, vol. 68(C), pages 178-191.
    17. Masahisa Fujita & Paul Krugman, 2004. "The new economic geography: Past, present and the future," Advances in Spatial Science, in: Raymond J. G. M. Florax & David A. Plane (ed.), Fifty Years of Regional Science, pages 139-164, Springer.
    18. Chen, Zhenhua & Haynes, Kingsley E., 2017. "Impact of high-speed rail on regional economic disparity in China," Journal of Transport Geography, Elsevier, vol. 65(C), pages 80-91.
    19. Daniel Griffith, 2009. "Modeling spatial autocorrelation in spatial interaction data: empirical evidence from 2002 Germany journey-to-work flows," Journal of Geographical Systems, Springer, vol. 11(2), pages 117-140, June.
    20. Fujita , Masahisa & Krugman, Paul, 2004. "The new economic geography: Past, present and the future," INVESTIGACIONES REGIONALES - Journal of REGIONAL RESEARCH, Asociación Española de Ciencia Regional, issue 4, pages 177-206.
    21. Jun Yang & Andong Guo & Xueming Li & Tai Huang, 2018. "Study of the Impact of a High-Speed Railway Opening on China’s Accessibility Pattern and Spatial Equality," Sustainability, MDPI, vol. 10(8), pages 1-13, August.
    22. Yi Zhu & Mi Diao & Gang Fu, 2016. "The evolution of accessibility surface of China in the high-speed-rail era," Environment and Planning A, , vol. 48(11), pages 2108-2111, November.
    23. Chia-Lin Chen & Roger Vickerman, 2017. "Can transport infrastructure change regions’ economic fortunes? Some evidence from Europe and China," Regional Studies, Taylor & Francis Journals, vol. 51(1), pages 144-160, January.
    24. Yu Qin, 2017. "‘No county left behind?’ The distributional impact of high-speed rail upgrades in China," Journal of Economic Geography, Oxford University Press, vol. 17(3), pages 489-520.
    25. Dan-Lin Yu, 2006. "Spatially varying development mechanisms in the Greater Beijing Area: a geographically weighted regression investigation," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 40(1), pages 173-190, March.
    26. Andersson, David Emanuel & Shyr, Oliver F. & Fu, Johnson, 2010. "Does high-speed rail accessibility influence residential property prices? Hedonic estimates from southern Taiwan," Journal of Transport Geography, Elsevier, vol. 18(1), pages 166-174.
    27. Roberto Patuelli & Daniel A. Griffith & Michael Tiefelsdorf & Peter Nijkamp, 2006. "The Use of Spatial Filtering Techniques: The Spatial and Space-time Structure of German Unemployment Data," Tinbergen Institute Discussion Papers 06-049/3, Tinbergen Institute.
    28. Xu, Xingbai & Lee, Lung-fei, 2019. "Theoretical foundations for spatial econometric research," Regional Science and Urban Economics, Elsevier, vol. 76(C), pages 2-12.
    29. Daniel A. Griffith & Manfred M. Fischer & James LeSage, 2017. "The spatial autocorrelation problem in spatial interaction modelling: a comparison of two common solutions," Letters in Spatial and Resource Sciences, Springer, vol. 10(1), pages 75-86, March.
    30. Guangqing Chi & Jun Zhu, 2008. "Spatial Regression Models for Demographic Analysis," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 27(1), pages 17-42, February.
    31. Zhang, Wenxin & Nian, Peihao & Lyu, Guowei, 2016. "A multimodal approach to assessing accessibility of a high-speed railway station," Journal of Transport Geography, Elsevier, vol. 54(C), pages 91-101.
    32. Rokicki, Bartlomiej & Stępniak, Marcin, 2018. "Major transport infrastructure investment and regional economic development – An accessibility-based approach," Journal of Transport Geography, Elsevier, vol. 72(C), pages 36-49.
    33. Xu, Wangtu (Ato) & Zhou, Jiangping & Qiu, Guo, 2018. "China's high-speed rail network construction and planning over time: a network analysis," Journal of Transport Geography, Elsevier, vol. 70(C), pages 40-54.
    34. Daniel A. Griffith, 2000. "A linear regression solution to the spatial autocorrelation problem," Journal of Geographical Systems, Springer, vol. 2(2), pages 141-156, July.
    35. Roberto Patuelli & Daniel A. Griffith & Michael Tiefelsdorf & Peter Nijkamp, 2011. "Spatial Filtering and Eigenvector Stability: Space-Time Models for German Unemployment Data," International Regional Science Review, , vol. 34(2), pages 253-280, April.
    36. SONG, Rui & YU, Zhongxiang, 2016. "On China's New Urbanization and Land Use," Asian Agricultural Research, USA-China Science and Culture Media Corporation, vol. 8(05), pages 1-3, May.
    37. Heuermann, Daniel F. & Schmieder, Johannes F., 2014. "Warping Space: High-Speed Rail and Returns to Scale in Local Labor Markets," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100293, Verein für Socialpolitik / German Economic Association.
    38. Wang, Lvhua & Liu, Yongxue & Sun, Chao & Liu, Yahui, 2016. "Accessibility impact of the present and future high-speed rail network: A case study of Jiangsu Province, China," Journal of Transport Geography, Elsevier, vol. 54(C), pages 161-172.
    39. Yun Chen & Lijia Wei, 2018. "Railroad development, temporal‐spatial externalities, and growth spillover: Theory and empirical evidence," Journal of Regional Science, Wiley Blackwell, vol. 58(5), pages 980-1002, November.
    40. Melo, Patricia C. & Graham, Daniel J. & Brage-Ardao, Ruben, 2013. "The productivity of transport infrastructure investment: A meta-analysis of empirical evidence," Regional Science and Urban Economics, Elsevier, vol. 43(5), pages 695-706.
    41. Luc Anselin & Rodolfo Bongiovanni & Jess Lowenberg-DeBoer, 2004. "A Spatial Econometric Approach to the Economics of Site-Specific Nitrogen Management in Corn Production," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(3), pages 675-687.
    42. Shen, Yu & de Abreu e Silva, João & Martínez, Luis Miguel, 2014. "Assessing High-Speed Rail’s impacts on land cover change in large urban areas based on spatial mixed logit methods: a case study of Madrid Atocha railway station from 1990 to 2006," Journal of Transport Geography, Elsevier, vol. 41(C), pages 184-196.
    43. Wang, De-gen & Niu, Yu & Qian, Jia, 2018. "Evolution and optimization of China's urban tourism spatial structure: A high speed rail perspective," Tourism Management, Elsevier, vol. 64(C), pages 218-232.
    44. Daniel A. Griffith, 2008. "A comparison of four model specifications for describing small heterogeneous space‐time datasets: Sugar cane production in Puerto Rico, 1958/59–1973/74," Papers in Regional Science, Wiley Blackwell, vol. 87(3), pages 341-355, August.
    45. Cheng Hsiao & H. Steve Ching & Shui Ki Wan, 2012. "A Panel Data Approach For Program Evaluation: Measuring The Benefits Of Political And Economic Integration Of Hong Kong With Mainland China," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(5), pages 705-740, August.
    46. James Jixian Wang & Jiang Xu & Jianfeng He, 2013. "Spatial Impacts of High-Speed Railways in China: A Total-Travel-Time Approach," Environment and Planning A, , vol. 45(9), pages 2261-2280, September.
    47. Danlin Yu & Yehua Dennis Wei, 2008. "Spatial data analysis of regional development in Greater Beijing, China, in a GIS environment," Papers in Regional Science, Wiley Blackwell, vol. 87(1), pages 97-117, March.
    48. Shao, Shuai & Tian, Zhihua & Yang, Lili, 2017. "High speed rail and urban service industry agglomeration: Evidence from China's Yangtze River Delta region," Journal of Transport Geography, Elsevier, vol. 64(C), pages 174-183.
    49. Simona Iammarino & Elisabetta Marinelli, 2015. "Education-Job (Mis)Match and Interregional Migration: Italian University Graduates' Transition to Work," Regional Studies, Taylor & Francis Journals, vol. 49(5), pages 866-882, May.
    50. Ke, Xiao & Chen, Haiqiang & Hong, Yongmiao & Hsiao, Cheng, 2017. "Do China's high-speed-rail projects promote local economy?—New evidence from a panel data approach," China Economic Review, Elsevier, vol. 44(C), pages 203-226.
    51. Campa, Juan Luis & López-Lambas, María Eugenia & Guirao, Begoña, 2016. "High speed rail effects on tourism: Spanish empirical evidence derived from China's modelling experience," Journal of Transport Geography, Elsevier, vol. 57(C), pages 44-54.
    52. Daniel A. Griffith, 2003. "Spatial Autocorrelation and Spatial Filtering," Advances in Spatial Science, Springer, number 978-3-540-24806-4, Fall.
    53. Daniel A. Griffith, 2009. "Spatial Autocorrelation in Spatial Interaction," Advances in Spatial Science, in: Aura Reggiani & Peter Nijkamp (ed.), Complexity and Spatial Networks, chapter 0, pages 221-237, Springer.
    54. A. Stewart Fotheringham & Wenbai Yang & Wei Kang, 2017. "Multiscale Geographically Weighted Regression (MGWR)," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 107(6), pages 1247-1265, November.
    55. Daisuke Murakami & Daniel Griffith, 2015. "Random effects specifications in eigenvector spatial filtering: a simulation study," Journal of Geographical Systems, Springer, vol. 17(4), pages 311-331, October.
    56. Diao, Mi, 2018. "Does growth follow the rail? The potential impact of high-speed rail on the economic geography of China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 279-290.
    57. Cartenì, Armando & Pariota, Luigi & Henke, Ilaria, 2017. "Hedonic value of high-speed rail services: Quantitative analysis of the students’ domestic tourist attractiveness of the main Italian cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 348-365.
    58. (Ato) Xu, Wangtu & Zhou, Jiangping & Yang, Linchuan & Li, Ling, 2018. "The implications of high-speed rail for Chinese cities: Connectivity and accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 308-326.
    59. Páez, Antonio & Scott, Darren M. & Morency, Catherine, 2012. "Measuring accessibility: positive and normative implementations of various accessibility indicators," Journal of Transport Geography, Elsevier, vol. 25(C), pages 141-153.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Wenwan & Zhu, Shengjun, 2023. "High-speed rail network and regional convergence/divergence in industrial structure," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    2. Jun‐Teng Ma & Tie‐Ying Liu, 2022. "Does the high‐speed rail network improve economic growth?," Papers in Regional Science, Wiley Blackwell, vol. 101(1), pages 183-208, February.
    3. Yu, Danlin & Zhang, Yaojun & Wu, Xiwei & Li, Ding & Li, Guangdong, 2021. "The varying effects of accessing high-speed rail system on China’s county development: A geographically weighted panel regression analysis," Land Use Policy, Elsevier, vol. 100(C).
    4. Wenwen Sun & Daisuke Murakami & Xin Hu & Zhuoran Li & Akari Nakai Kidd & Chunlu Liu, 2023. "Supply–Demand Imbalance in School Land: An Eigenvector Spatial Filtering Approach," Sustainability, MDPI, vol. 15(17), pages 1-14, August.
    5. Zhang, Ailian & Pan, Mengmeng & Liu, Bai & Cao, Xianbin, 2023. "Do high-speed rail (HSR) station and airport affect local government debt risk? Evidence from China," Transport Policy, Elsevier, vol. 134(C), pages 41-51.
    6. Xiaoliang Wang & Danlin Yu & Chunhua Yuan, 2021. "Complementary Development between China and Sub-Sahara Africa: Examining China’s Mining Investment Strategies in Africa," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    7. Hiramatsu, Tomoru, 2023. "Inter-metropolitan regional migration galvanized by high-speed rail: A simulation analysis of the Linear Chuo Shinkansen line in Japan," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    8. Wang, Chunan & Jiang, Changmin & Zhang, Anming, 2021. "Effects of Airline Entry on High-Speed Rail," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 242-265.
    9. Pengxia Shen & Ping Yin & Bingjie Niu, 2023. "Assessing the Combined Effects of Transportation Infrastructure on Regional Tourism Development in China Using a Spatial Econometric Model (GWPR)," Land, MDPI, vol. 12(1), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Danlin & Zhang, Yaojun & Wu, Xiwei & Li, Ding & Li, Guangdong, 2021. "The varying effects of accessing high-speed rail system on China’s county development: A geographically weighted panel regression analysis," Land Use Policy, Elsevier, vol. 100(C).
    2. Li, Xiaolong & Wu, Zongfa & Zhao, Xingchen, 2020. "Economic effect and its disparity of high speed rail in China: A study of mechanism based on synthesis control method," Transport Policy, Elsevier, vol. 99(C), pages 262-274.
    3. Cascetta, Ennio & Cartenì, Armando & Henke, Ilaria & Pagliara, Francesca, 2020. "Economic growth, transport accessibility and regional equity impacts of high-speed railways in Italy: ten years ex post evaluation and future perspectives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 412-428.
    4. Huang, Yan & Zong, Huiming, 2020. "The spatial distribution and determinants of China’s high-speed train services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 56-70.
    5. Di Matteo, Dante & Mariotti, Ilaria & Rossi, Federica, 2023. "Transport infrastructure and economic performance: An evaluation of the Milan-Bologna high-speed rail corridor," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    6. Shujie Yao & Jing Fang & Hongbo He, 2020. "Can Time–Space Compression Promote Urban Economic Growth? Evidence from China's High‐speed Rail Projects," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 28(5), pages 90-117, September.
    7. Xinshuo Hou, 2019. "High-Speed Railway and City Tourism in China: A Quasi-Experimental Study on HSR Operation," Sustainability, MDPI, vol. 11(6), pages 1-19, March.
    8. Sun, Xinyu & Yan, Sen & Liu, Tao & Wang, Jiayin, 2023. "The impact of high-speed rail on urban economy: Synergy with urban agglomeration policy," Transport Policy, Elsevier, vol. 130(C), pages 141-154.
    9. Tanaka, Koichi, 2023. "Impacts of the opening of the maglev railway on daily accessibility in Japan: A comparative analysis with that of the Shinkansen," Journal of Transport Geography, Elsevier, vol. 106(C).
    10. Liu, Liwen & Zhang, Ming, 2018. "High-speed rail impacts on travel times, accessibility, and economic productivity: A benchmarking analysis in city-cluster regions of China," Journal of Transport Geography, Elsevier, vol. 73(C), pages 25-40.
    11. Mohsen Momenitabar & Zhila Dehdari Ebrahimi & Mohammad Arani, 2020. "A Systematic and Analytical Review of the Socioeconomic and Environmental Impact of the Deployed High-Speed Rail (HSR) Systems on the World," Papers 2003.04452, arXiv.org, revised Mar 2020.
    12. Meng Tian & Tongping Li & Shuwang Yang & Yiwei Wang & Shuke Fu, 2019. "The Impact of High-Speed Rail on the Service-Sector Agglomeration in China," Sustainability, MDPI, vol. 11(7), pages 1-19, April.
    13. Liu, Shuli & Wan, Yulai & Zhang, Anming, 2020. "Does China’s high-speed rail development lead to regional disparities? A network perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 299-321.
    14. Wang, Feng & Wei, Xianjin & Liu, Juan & He, Lingyun & Gao, Mengnan, 2019. "Impact of high-speed rail on population mobility and urbanisation: A case study on Yangtze River Delta urban agglomeration, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 99-114.
    15. Xiongbin Lin & Ian MacLachlan & Ting Ren & Feiyang Sun, 2019. "Quantifying economic effects of transportation investment considering spatiotemporal heterogeneity in China: a spatial panel data model perspective," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 63(3), pages 437-459, December.
    16. Jin, Mengjie & Lin, Kun-Chin & Shi, Wenming & Lee, Paul T.W. & Li, Kevin X., 2020. "Impacts of high-speed railways on economic growth and disparity in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 158-171.
    17. Zheng, Longfei & Long, Fenjie & Chang, Zheng & Ye, Jingsong, 2019. "Ghost town or city of hope? The spatial spillover effects of high-speed railway stations in China," Transport Policy, Elsevier, vol. 81(C), pages 230-241.
    18. Xiaomin Wang & Jingyu Liu & Wenxin Zhang, 2022. "Impact of High-Speed Rail on Spatial Structure in Prefecture-Level Cities: Evidence from the Central Plains Urban Agglomeration, China," Sustainability, MDPI, vol. 14(23), pages 1-17, December.
    19. Yang, Zhiwei & Li, Can & Jiao, Jingjuan & Liu, Wei & Zhang, Fangni, 2020. "On the joint impact of high-speed rail and megalopolis policy on regional economic growth in China," Transport Policy, Elsevier, vol. 99(C), pages 20-30.
    20. (Ato) Xu, Wangtu & Zhou, Jiangping & Yang, Linchuan & Li, Ling, 2018. "The implications of high-speed rail for Chinese cities: Connectivity and accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 308-326.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:133:y:2020:i:c:p:21-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.