IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v191y2023ics0040162523002172.html
   My bibliography  Save this article

Hybrid crops, income, and food security of smallholder families: Empirical evidence from poor states of India

Author

Listed:
  • Tripathi, Amarnath
  • Sardar, Sucheta
  • Shyam, Hari Shankar

Abstract

This study investigates the impact of adopting hybrid crops (rice and maize) on smallholder farm households' income and food security in two of India's poorest states (Bihar and Uttar Pradesh). We use two-stage endogenous treatment regression and farm household data from a survey by the Cereal Systems Initiative for South Asia during 2010–11. Findings suggest that adopting hybrid crops significantly increases smallholders' household income. Hybrid technology adoption also significantly increases smallholder households' food security. However, our findings indicate that the impact on income and food security is much higher for adopters of hybrid maize than for adopters of hybrid rice. These results show that hybrid crops enhance the welfare of smallholder farm families.

Suggested Citation

  • Tripathi, Amarnath & Sardar, Sucheta & Shyam, Hari Shankar, 2023. "Hybrid crops, income, and food security of smallholder families: Empirical evidence from poor states of India," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:tefoso:v:191:y:2023:i:c:s0040162523002172
    DOI: 10.1016/j.techfore.2023.122532
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162523002172
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2023.122532?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mulubrhan Amare & Solomon Asfaw & Bekele Shiferaw, 2012. "Welfare impacts of maize–pigeonpea intensification in Tanzania," Agricultural Economics, International Association of Agricultural Economists, vol. 43(1), pages 27-43, January.
    2. Raghu, Prabhakaran T. & Erenstein, Olaf & Böber, Christian & Krishna, Vijesh V., 2015. "Adoption and Outcomes of Hybrid Maize in the Marginal Areas of India," Quarterly Journal of International Agriculture, Humboldt-Universitaat zu Berlin, vol. 54(2), pages 1-26, May.
    3. Vernon W. Ruttan, 2002. "Productivity Growth in World Agriculture: Sources and Constraints," Journal of Economic Perspectives, American Economic Association, vol. 16(4), pages 161-184, Fall.
    4. Janaiah, Aldas & Xie, Fangming, 2010. "Hybrid rice adoption in India: farm level impacts and challenges," IRRI Technical Bulletins 287643, International Rice Research Institute (IRRI).
    5. James J. Heckman, 1976. "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 475-492, National Bureau of Economic Research, Inc.
    6. Hermann Lotze‐Campen & Christoph Müller & Alberte Bondeau & Stefanie Rost & Alexander Popp & Wolfgang Lucht, 2008. "Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach," Agricultural Economics, International Association of Agricultural Economists, vol. 39(3), pages 325-338, November.
    7. Justin Yifu Lin, 1991. "Education and Innovation Adoption in Agriculture: Evidence from Hybrid Rice in China," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 73(3), pages 713-723.
    8. Feder, Gershon & Just, Richard E & Zilberman, David, 1985. "Adoption of Agricultural Innovations in Developing Countries: A Survey," Economic Development and Cultural Change, University of Chicago Press, vol. 33(2), pages 255-298, January.
    9. Darwin C. Hall & Gregory M. Duncan, 1984. "Econometric Evaluation of New Technology with an Application to Integrated Pest Management," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 66(5), pages 624-633.
    10. Mohamed Behnassi & Mahjoub El Haiba, 2022. "Implications of the Russia–Ukraine war for global food security," Nature Human Behaviour, Nature, vol. 6(6), pages 754-755, June.
    11. Lydia Zepeda & Marco Castillo, 1997. "The Role of Husbands and Wives in Farm Technology Choice," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(2), pages 583-588.
    12. Kenneth W Clements & Jiawei Si, 2018. "Engel’s Law, Diet Diversity, and the Quality of Food Consumption," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(1), pages 1-22.
    13. Gregory D. Wozniak, 1987. "Human Capital, Information, and the Early Adoption of New Technology," Journal of Human Resources, University of Wisconsin Press, vol. 22(1), pages 101-112.
    14. von Grebmer, Klaus & Saltzman, Amy & Birol, Ekin & Wiesmann, Doris & Prasai, Nilam & Yin, Sandra & Yohannes, Yisehac & Menon, Purnima & Thompson, Jennifer & Sonntag, Andrea, 2014. "Synopsis of 2014 Global hunger index: The challenge of hidden hunger:," Issue briefs 83, International Food Policy Research Institute (IFPRI).
    15. Besley, Timothy J & Kanbur, S M Ravi, 1988. "Food Subsidies and Poverty Alleviation," Economic Journal, Royal Economic Society, vol. 98(392), pages 701-719, September.
    16. von Grebmer, Klaus & Saltzman, Amy & Birol, Ekin & Wiesman, Doris & Prasai, Nilam & Yin, Sandra & Yohannes, Yisehac & Menon, Purnima & Thompson, Jennifer & Sonntag, Andrea, 2014. "2014 Global Hunger Index: The challenge of hidden hunger," IFPRI books, International Food Policy Research Institute (IFPRI), number 978-0-89629-958-0 edited by Sonntag, Andrea & Neubauer, Larissa & Towey, Olive & von Grebmer, Klaus & Yin, Sandra.
    17. Patrick Puhani, 2000. "The Heckman Correction for Sample Selection and Its Critique," Journal of Economic Surveys, Wiley Blackwell, vol. 14(1), pages 53-68, February.
    18. Benjamin Crost & Bhavani Shankar & Richard Bennett & Stephen Morse, 2007. "Bias from Farmer Self-Selection in Genetically Modified Crop Productivity Estimates: Evidence from Indian Data," Journal of Agricultural Economics, Wiley Blackwell, vol. 58(1), pages 24-36, February.
    19. Solis, Daniel & Bravo-Ureta, Boris E. & Quiroga, Ricardo E., 2007. "Soil conservation and technical efficiency among hillside farmers in Central America: a switching regression model," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 51(4), pages 1-20.
    20. Angus Deaton & Christina Paxson, 1998. "Economies of Scale, Household Size, and the Demand for Food," Journal of Political Economy, University of Chicago Press, vol. 106(5), pages 897-930, October.
    21. Richard Bennett & Uma Kambhampati & Stephen Morse & Yousouf Ismael, 2006. "Farm-Level Economic Performance of Genetically Modified Cotton in Maharashtra, India," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 28(1), pages 59-71.
    22. W. David Bradford & Andrew N. Kleit & Marie A. Krousel-Wood & Richard N. Re, 2001. "Stochastic Frontier Estimation Of Cost Models Within The Hospital," The Review of Economics and Statistics, MIT Press, vol. 83(2), pages 302-309, May.
    23. Jena, Pradyot R. & Grote, Ulrike, 2012. "Impact Evaluation of Traditional Basmati Rice Cultivation in Uttarakhand State of Northern India: What Implications Does It Hold for Geographical Indications?," World Development, Elsevier, vol. 40(9), pages 1895-1907.
    24. Heckman, James J, 1978. "Dummy Endogenous Variables in a Simultaneous Equation System," Econometrica, Econometric Society, vol. 46(4), pages 931-959, July.
    25. Matuschke, Ira & Mishra, Ritesh R. & Qaim, Matin, 2007. "Adoption and Impact of Hybrid Wheat in India," World Development, Elsevier, vol. 35(8), pages 1422-1435, August.
    26. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    27. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    28. Matin Qaim & Arjunan Subramanian & Gopal Naik & David Zilberman, 2006. "Adoption of Bt Cotton and Impact Variability: Insights from India," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 28(1), pages 48-58.
    29. Janvry, Alain de & Sadoulet, Elisabeth, 2001. "Income Strategies Among Rural Households in Mexico: The Role of Off-farm Activities," World Development, Elsevier, vol. 29(3), pages 467-480, March.
    30. Raghu, Prabhakaran T. & Erenstein, Olaf & Böber, Christian & Krishna, Vijesh V., 2015. "Adoption and Outcomes of Hybrid Maize in the Marginal Areas of India: Annex: Questionnaire," Quarterly Journal of International Agriculture, Humboldt-Universitaat zu Berlin, vol. 54(2), pages 1-13, May.
    31. Frank Ellis, 1998. "Household strategies and rural livelihood diversification," Journal of Development Studies, Taylor & Francis Journals, vol. 35(1), pages 1-38.
    32. Kassie, Menale & Shiferaw, Bekele & Muricho, Geoffrey, 2011. "Agricultural Technology, Crop Income, and Poverty Alleviation in Uganda," World Development, Elsevier, vol. 39(10), pages 1784-1795.
    33. Becerril, Javier & Abdulai, Awudu, 2010. "The Impact of Improved Maize Varieties on Poverty in Mexico: A Propensity Score-Matching Approach," World Development, Elsevier, vol. 38(7), pages 1024-1035, July.
    34. Solomon Asfaw & Menale Kassie & Franklin Simtowe & Leslie Lipper, 2012. "Poverty Reduction Effects of Agricultural Technology Adoption: A Micro-evidence from Rural Tanzania," Journal of Development Studies, Taylor & Francis Journals, vol. 48(9), pages 1288-1305, September.
    35. Yoko Kijima & Keijiro Otsuka & Dick Sserunkuuma, 2008. "Assessing the impact of NERICA on income and poverty in central and western Uganda," Agricultural Economics, International Association of Agricultural Economists, vol. 38(3), pages 327-337, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khonje, Makaiko & Mkandawire, Petros & Manda, Julius & Alene, Arega, 2015. "Analysis of adoption and impacts of improved cassava varieties," 2015 Conference, August 9-14, 2015, Milan, Italy 211842, International Association of Agricultural Economists.
    2. Garbero, A. & Marion, P., 2018. "IFAD RESEARCH SERIES 28 - Understanding the dynamics of adoption decisions and their poverty impacts: the case of improved maize seeds in Uganda," IFAD Research Series 280077, International Fund for Agricultural Development (IFAD).
    3. Mekonnen, Tigist, 2017. "Productivity and household welfare impact of technology adoption: Micro-level evidence from rural Ethiopia," MERIT Working Papers 2017-007, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    4. Mishra, Ashok K. & Khanal, Aditya R. & Pede, Valerien O., 2017. "Is direct seeded rice a boon for economic performance? Empirical evidence from India," Food Policy, Elsevier, vol. 73(C), pages 10-18.
    5. Felister Y. Tibamanya & Mursali A. Milanzi & Arne Henningsen, 2021. "Drivers of and Barriers to Adoption of Improved Sun- flower Varieties amongst Smallholder Farmers in Singida, Tanzania: the Double-Hurdle Approach," IFRO Working Paper 2021/03, University of Copenhagen, Department of Food and Resource Economics.
    6. Solomon Asfaw & Nancy McCarthy & Leslie Lipper & Aslihan Arslan & Andrea Cattaneo, 2016. "What determines farmers’ adaptive capacity? Empirical evidence from Malawi," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(3), pages 643-664, June.
    7. Shiferaw, Bekele & Kassie, Menale & Jaleta, Moti & Yirga, Chilot, 2014. "Adoption of improved wheat varieties and impacts on household food security in Ethiopia," Food Policy, Elsevier, vol. 44(C), pages 272-284.
    8. Bola Amoke Awotide & Aziz A. Karimov & Aliou Diagne, 2016. "Agricultural technology adoption, commercialization and smallholder rice farmers’ welfare in rural Nigeria," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 4(1), pages 1-24, December.
    9. Razafimahatratra, Hanitriniaina Mamy & Bignebat, Céline & David-Benz, Hélène & Bélières, Jean-François & Penot, Eric, 2021. "Tryout and (Dis)adoption of conservation agriculture. Evidence from Western Madagascar," Land Use Policy, Elsevier, vol. 100(C).
    10. Andrew Perumal & David Timmons, 2017. "Contextual Density and US Automotive CO2 Emissions across the Rural–Urban Continuum," International Regional Science Review, , vol. 40(6), pages 590-615, November.
    11. Tesfay, M., 2018. "Adoption of diversified farm technology in a semi arid of northern Ethiopia: A Panel Data Analysis," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 276008, International Association of Agricultural Economists.
    12. Emiliano Magrini & Mauro Vigani, 2016. "Technology adoption and the multiple dimensions of food security: the case of maize in Tanzania," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(4), pages 707-726, August.
    13. Maria Vrachioli & Spiro E. Stefanou & Vangelis Tzouvelekas, 2021. "Impact Evaluation of Alternative Irrigation Technology in Crete: Correcting for Selectivity Bias," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 79(3), pages 551-574, July.
    14. Huang, Wu & Zeng, Di & Zhou, Shudong, 2015. "Welfare Impacts of Modern Peanut Varieties in China," Quarterly Journal of International Agriculture, Humboldt-Universitaat zu Berlin, vol. 54(3), pages 1-18, September.
    15. Jing Peng, 2023. "Identification of Causal Mechanisms from Randomized Experiments: A Framework for Endogenous Mediation Analysis," Information Systems Research, INFORMS, vol. 34(1), pages 67-84, March.
    16. Tufa, Adane Hirpa & Alene, Arega D. & Manda, Julius & Akinwale, M.G. & Chikoye, David & Feleke, Shiferaw & Wossen, Tesfamicheal & Manyong, Victor, 2019. "The productivity and income effects of adoption of improved soybean varieties and agronomic practices in Malawi," World Development, Elsevier, vol. 124(C), pages 1-1.
    17. Saudamini Das, "undated". "Evaluating the Role of Media in Averting Heat Stroke Mortality: A Daily Panel Data Analysis," Working papers 102, The South Asian Network for Development and Environmental Economics.
    18. Alwang, Jeffrey & Gotor, Elisabetta & Thiele, Graham & Hareau, Guy & Jaleta, Moti & Chamberlin, Jordan, 2019. "Pathways from research on improved staple crop germplasm to poverty reduction for smallholder farmers," Agricultural Systems, Elsevier, vol. 172(C), pages 16-27.
    19. Tahirou Abdoulaye & Tesfamicheal Wossen & Bola Awotide, 2018. "Impacts of improved maize varieties in Nigeria: ex-post assessment of productivity and welfare outcomes," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(2), pages 369-379, April.
    20. Seonho Shin, 2022. "To work or not? Wages or subsidies?: Copula-based evidence of subsidized refugees’ negative selection into employment," Empirical Economics, Springer, vol. 63(4), pages 2209-2252, October.

    More about this item

    Keywords

    Hybrid crops; Technology adoption; Treatment effects; Food security; Household income; India;
    All these keywords.

    JEL classification:

    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • I30 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - General
    • I12 - Health, Education, and Welfare - - Health - - - Health Behavior
    • Q12 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:191:y:2023:i:c:s0040162523002172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.