IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v82y2018ip3p3107-3126.html
   My bibliography  Save this article

Bioremediation of textile wastewater and successive biodiesel production using microalgae

Author

Listed:
  • Fazal, Tahir
  • Mushtaq, Azeem
  • Rehman, Fahad
  • Ullah Khan, Asad
  • Rashid, Naim
  • Farooq, Wasif
  • Rehman, Muhammad Saif Ur
  • Xu, Jian

Abstract

Microalgal biodiesel has emerged as an environment friendly alternative to the existing fossil fuels. The commercial production of this biodiesel is still challenging due to several technical and economic issues, which span from mass cultivation of microalgae to the biodiesel production. Mass cultivation is the most critical step in terms of water and nutrient requirement. Industrial wastewater such as textile wastewater (TWW) is a cheap source for water, which additionally contains necessary nutrients (phosphate, nitrates, micronutrients etc.) and organic dyes (potential carbon source) for algae cultivation. The application of microalgae for biodiesel production employing single objective strategy is not sustainable. Microalgae can be effectively employed to bioremediate TWW (dyes and nutrients removal) and to produce biodiesel from grown microalgae. This process integration (bioremediation-biodiesel production) can potentially improve biodiesel production and wastewater treatment. However, this process coupling needs to be thoroughly investigated to identify and optimize critical process factors (algal species, cultivation and harvesting methods, bioremediation mechanism etc.). This study has reviewed the status of TWW as potential source of water and nutrients, role of different algal species in the bioremediation of TWW, different cultivation systems, harvesting and biodiesel production methods. This review also suggests future research and development challenges for coupled textile wastewater treatment and microalgal biodiesel production.

Suggested Citation

  • Fazal, Tahir & Mushtaq, Azeem & Rehman, Fahad & Ullah Khan, Asad & Rashid, Naim & Farooq, Wasif & Rehman, Muhammad Saif Ur & Xu, Jian, 2018. "Bioremediation of textile wastewater and successive biodiesel production using microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3107-3126.
  • Handle: RePEc:eee:rensus:v:82:y:2018:i:p3:p:3107-3126
    DOI: 10.1016/j.rser.2017.10.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117314016
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.10.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rawat, I. & Ranjith Kumar, R. & Mutanda, T. & Bux, F., 2011. "Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production," Applied Energy, Elsevier, vol. 88(10), pages 3411-3424.
    2. Abinandan, S. & Shanthakumar, S., 2015. "Challenges and opportunities in application of microalgae (Chlorophyta) for wastewater treatment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 123-132.
    3. Rashid, Naim & Rehman, Muhammad Saif Ur & Memon, Sheeraz & Ur Rahman, Zia & Lee, Kisay & Han, Jong-In, 2013. "Current status, barriers and developments in biohydrogen production by microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 571-579.
    4. Singh, R.N. & Sharma, Shaishav, 2012. "Development of suitable photobioreactor for algae production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2347-2353.
    5. Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
    6. Walayat Shah & Usman Ali Warraich & Abdul Kabeer Kazi, 2012. "Challenges Faced by Textile Industry of Pakistan: Suggested Solutions," KASBIT Business Journals (KBJ), Khadim Ali Shah Bukhari Institute of Technology (KASBIT), vol. 5, pages 33-39, December.
    7. Zeng, Xianhai & Guo, Xiaoyi & Su, Gaomin & Danquah, Michael K. & Zhang, Shiduo & Lu, Yinghua & Sun, Yong & Lin, Lu, 2015. "Bioprocess considerations for microalgal-based wastewater treatment and biomass production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1385-1392.
    8. Brennan, Liam & Owende, Philip, 2010. "Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 557-577, February.
    9. Marchetti, J.M. & Miguel, V.U. & Errazu, A.F., 2007. "Possible methods for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1300-1311, August.
    10. Barros, Ana I. & Gonçalves, Ana L. & Simões, Manuel & Pires, José C.M., 2015. "Harvesting techniques applied to microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1489-1500.
    11. Teo, Chee Loong & Jamaluddin, Haryati & Zain, Nur Azimah Mohd & Idris, Ani, 2014. "Biodiesel production via lipase catalysed transesterification of microalgae lipids from Tetraselmis sp," Renewable Energy, Elsevier, vol. 68(C), pages 1-5.
    12. Pires, J.C.M. & Alvim-Ferraz, M.C.M. & Martins, F.G. & Simões, M., 2012. "Carbon dioxide capture from flue gases using microalgae: Engineering aspects and biorefinery concept," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3043-3053.
    13. Cai, Ting & Park, Stephen Y. & Li, Yebo, 2013. "Nutrient recovery from wastewater streams by microalgae: Status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 360-369.
    14. Pragya, Namita & Pandey, Krishan K. & Sahoo, P.K., 2013. "A review on harvesting, oil extraction and biofuels production technologies from microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 159-171.
    15. Maity, Jyoti Prakash & Bundschuh, Jochen & Chen, Chien-Yen & Bhattacharya, Prosun, 2014. "Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives – A mini review," Energy, Elsevier, vol. 78(C), pages 104-113.
    16. Kalpesh K. Sharma & Holger Schuhmann & Peer M. Schenk, 2012. "High Lipid Induction in Microalgae for Biodiesel Production," Energies, MDPI, vol. 5(5), pages 1-22, May.
    17. Farrelly, Damien J. & Everard, Colm D. & Fagan, Colette C. & McDonnell, Kevin P., 2013. "Carbon sequestration and the role of biological carbon mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 712-727.
    18. Bahadar, Ali & Bilal Khan, M., 2013. "Progress in energy from microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 128-148.
    19. Rashid, Naim & Ur Rehman, Muhammad Saif & Sadiq, Madeha & Mahmood, Tariq & Han, Jong-In, 2014. "Current status, issues and developments in microalgae derived biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 760-778.
    20. Saddam H. Al-lwayzy & Talal Yusaf & Raed A. Al-Juboori, 2014. "Biofuels from the Fresh Water Microalgae Chlorella vulgaris (FWM-CV) for Diesel Engines," Energies, MDPI, vol. 7(3), pages 1-23, March.
    21. Lam, Man Kee & Yusoff, Mohammad Iqram & Uemura, Yoshimitsu & Lim, Jun Wei & Khoo, Choon Gek & Lee, Keat Teong & Ong, Hwai Chyuan, 2017. "Cultivation of Chlorella vulgaris using nutrients source from domestic wastewater for biodiesel production: Growth condition and kinetic studies," Renewable Energy, Elsevier, vol. 103(C), pages 197-207.
    22. Rawat, I. & Ranjith Kumar, R. & Mutanda, T. & Bux, F., 2013. "Biodiesel from microalgae: A critical evaluation from laboratory to large scale production," Applied Energy, Elsevier, vol. 103(C), pages 444-467.
    23. Jayakumar, Saravanan & Yusoff, Mashitah M. & Rahim, Mohd Hasbi Ab. & Maniam, Gaanty Pragas & Govindan, Natanamurugaraj, 2017. "The prospect of microalgal biodiesel using agro-industrial and industrial wastes in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 33-47.
    24. Huang, GuanHua & Chen, Feng & Wei, Dong & Zhang, XueWu & Chen, Gu, 2010. "Biodiesel production by microalgal biotechnology," Applied Energy, Elsevier, vol. 87(1), pages 38-46, January.
    25. Oncel, Suphi S., 2013. "Microalgae for a macroenergy world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 241-264.
    26. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    27. Kumar, Kanhaiya & Mishra, Sanjiv K. & Shrivastav, Anupama & Park, Min S. & Yang, Ji-Won, 2015. "Recent trends in the mass cultivation of algae in raceway ponds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 875-885.
    28. Salama, El-Sayed & Kurade, Mayur B. & Abou-Shanab, Reda A.I. & El-Dalatony, Marwa M. & Yang, Il-Seung & Min, Booki & Jeon, Byong-Hun, 2017. "Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1189-1211.
    29. Cheah, Wai Yan & Ling, Tau Chuan & Show, Pau Loke & Juan, Joon Ching & Chang, Jo-Shu & Lee, Duu-Jong, 2016. "Cultivation in wastewaters for energy: A microalgae platform," Applied Energy, Elsevier, vol. 179(C), pages 609-625.
    30. Kligerman, Debora Cynamon & Bouwer, Edward J., 2015. "Prospects for biodiesel production from algae-based wastewater treatment in Brazil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1834-1846.
    31. Suganya, T. & Varman, M. & Masjuki, H.H. & Renganathan, S., 2016. "Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 909-941.
    32. Razzak, Shaikh A. & Hossain, Mohammad M. & Lucky, Rahima A. & Bassi, Amarjeet S. & de Lasa, Hugo, 2013. "Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 622-653.
    33. Prathima Devi, M. & Venkata Subhash, G. & Venkata Mohan, S., 2012. "Heterotrophic cultivation of mixed microalgae for lipid accumulation and wastewater treatment during sequential growth and starvation phases: Effect of nutrient supplementation," Renewable Energy, Elsevier, vol. 43(C), pages 276-283.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khandaker, Shahjalal & Bashar, M Mahbubul & Islam, Aminul & Hossain, Md. Tofazzal & Teo, Siow Hwa & Awual, Md. Rabiul, 2022. "Sustainable energy generation from textile biowaste and its challenges: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Ravi Kant Bhatia & Deepak Sakhuja & Shyam Mundhe & Abhishek Walia, 2020. "Renewable Energy Products through Bioremediation of Wastewater," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
    3. Hussain, Fida & Shah, Syed Z. & Ahmad, Habib & Abubshait, Samar A. & Abubshait, Haya A. & Laref, A. & Manikandan, A. & Kusuma, Heri S. & Iqbal, Munawar, 2021. "Microalgae an ecofriendly and sustainable wastewater treatment option: Biomass application in biofuel and bio-fertilizer production. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Chen, Jiaxin & Li, Ji & Dong, Wenyi & Zhang, Xiaolei & Tyagi, Rajeshwar D. & Drogui, Patrick & Surampalli, Rao Y., 2018. "The potential of microalgae in biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 336-346.
    5. Muhammad Suleman & Muhammad Zafar & Ashfaq Ahmed & Muhammad Usman Rashid & Sadiq Hussain & Abdul Razzaq & Nur Atikah Mohidem & Tahir Fazal & Bilal Haider & Young-Kwon Park, 2021. "Castor Leaves-Based Biochar for Adsorption of Safranin from Textile Wastewater," Sustainability, MDPI, vol. 13(12), pages 1-18, June.
    6. Marcin Dębowski & Marcin Zieliński & Joanna Kazimierowicz & Natalia Kujawska & Szymon Talbierz, 2020. "Microalgae Cultivation Technologies as an Opportunity for Bioenergetic System Development—Advantages and Limitations," Sustainability, MDPI, vol. 12(23), pages 1-37, November.
    7. Swati Dahiya & Raja Chowdhury & Wendong Tao & Pradeep Kumar, 2021. "Biomass and Lipid Productivity by Two Algal Strains of Chlorella sorokiniana Grown in Hydrolysate of Water Hyacinth," Energies, MDPI, vol. 14(5), pages 1-21, March.
    8. Fan Wei & Munazzam Jawad Shahid & Ghalia S. H. Alnusairi & Muhammad Afzal & Aziz Khan & Mohamed A. El-Esawi & Zohaib Abbas & Kunhua Wei & Ihsan Elahi Zaheer & Muhammad Rizwan & Shafaqat Ali, 2020. "Implementation of Floating Treatment Wetlands for Textile Wastewater Management: A Review," Sustainability, MDPI, vol. 12(14), pages 1-35, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barros, Ana I. & Gonçalves, Ana L. & Simões, Manuel & Pires, José C.M., 2015. "Harvesting techniques applied to microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1489-1500.
    2. Mathimani, Thangavel & Mallick, Nirupama, 2018. "A comprehensive review on harvesting of microalgae for biodiesel – Key challenges and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1103-1120.
    3. Shah, Syed Hasnain & Raja, Iftikhar Ahmed & Rizwan, Muhammad & Rashid, Naim & Mahmood, Qaisar & Shah, Fayyaz Ali & Pervez, Arshid, 2018. "Potential of microalgal biodiesel production and its sustainability perspectives in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 76-92.
    4. Rastogi, Rajesh P. & Pandey, Ashok & Larroche, Christian & Madamwar, Datta, 2018. "Algal Green Energy – R&D and technological perspectives for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2946-2969.
    5. Ferreira, G.F. & Ríos Pinto, L.F. & Maciel Filho, R. & Fregolente, L.V., 2019. "A review on lipid production from microalgae: Association between cultivation using waste streams and fatty acid profiles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 448-466.
    6. Esveidi Montserrat Valdovinos-García & Juan Barajas-Fernández & María de los Ángeles Olán-Acosta & Moisés Abraham Petriz-Prieto & Adriana Guzmán-López & Micael Gerardo Bravo-Sánchez, 2020. "Techno-Economic Study of CO 2 Capture of a Thermoelectric Plant Using Microalgae ( Chlorella vulgaris ) for Production of Feedstock for Bioenergy," Energies, MDPI, vol. 13(2), pages 1-19, January.
    7. Cuevas-Castillo, Gabriela A. & Navarro-Pineda, Freddy S. & Baz Rodríguez, Sergio A. & Sacramento Rivero, Julio C., 2020. "Advances on the processing of microalgal biomass for energy-driven biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    8. Cheah, Wai Yan & Ling, Tau Chuan & Show, Pau Loke & Juan, Joon Ching & Chang, Jo-Shu & Lee, Duu-Jong, 2016. "Cultivation in wastewaters for energy: A microalgae platform," Applied Energy, Elsevier, vol. 179(C), pages 609-625.
    9. Menegazzo, Mariana Lara & Fonseca, Gustavo Graciano, 2019. "Biomass recovery and lipid extraction processes for microalgae biofuels production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 87-107.
    10. Tasić, Marija B. & Pinto, Luisa Fernanda Rios & Klein, Bruno Colling & Veljković, Vlada B. & Filho, Rubens Maciel, 2016. "Botryococcus braunii for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 260-270.
    11. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    12. Razzak, Shaikh Abdur & Ali, Saad Aldin M. & Hossain, Mohammad Mozahar & deLasa, Hugo, 2017. "Biological CO2 fixation with production of microalgae in wastewater – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 379-390.
    13. Enamala, Manoj Kumar & Enamala, Swapnika & Chavali, Murthy & Donepudi, Jagadish & Yadavalli, Rajasri & Kolapalli, Bhulakshmi & Aradhyula, Tirumala Vasu & Velpuri, Jeevitha & Kuppam, Chandrasekhar, 2018. "Production of biofuels from microalgae - A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 49-68.
    14. Zhu, Liandong & Nugroho, Y.K. & Shakeel, S.R. & Li, Zhaohua & Martinkauppi, B. & Hiltunen, E., 2017. "Using microalgae to produce liquid transportation biodiesel: What is next?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 391-400.
    15. Pires, José C.M., 2017. "COP21: The algae opportunity?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 867-877.
    16. Sharma, Yogesh Chandra & Singh, Veena, 2017. "Microalgal biodiesel: A possible solution for India’s energy security," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 72-88.
    17. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    18. Milano, Jassinnee & Ong, Hwai Chyuan & Masjuki, H.H. & Chong, W.T. & Lam, Man Kee & Loh, Ping Kwan & Vellayan, Viknes, 2016. "Microalgae biofuels as an alternative to fossil fuel for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 180-197.
    19. Marwa G. Saad & Noura S. Dosoky & Mohamed S. Zoromba & Hesham M. Shafik, 2019. "Algal Biofuels: Current Status and Key Challenges," Energies, MDPI, vol. 12(10), pages 1-22, May.
    20. Lam, Man Kee & Lee, Keat Teong, 2012. "Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production," Applied Energy, Elsevier, vol. 94(C), pages 303-308.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:82:y:2018:i:p3:p:3107-3126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.