IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i10p1920-d232708.html
   My bibliography  Save this article

Algal Biofuels: Current Status and Key Challenges

Author

Listed:
  • Marwa G. Saad

    (Department of Biology, Faculty of Science, Port-Said University, Port-Said 42521, Egypt
    Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
    M.G.S. and N.S.D. contributed equally to this work.)

  • Noura S. Dosoky

    (Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
    M.G.S. and N.S.D. contributed equally to this work.)

  • Mohamed S. Zoromba

    (Chemical and Materials Engineering Department, King Abdulaziz University, Rabigh 21911, Saudi Arabia
    Department of Chemistry, Faculty of Science, Port-Said University, Port Said 42521, Egypt)

  • Hesham M. Shafik

    (Department of Biology, Faculty of Science, Port-Said University, Port-Said 42521, Egypt)

Abstract

The current fossil fuel reserves are not sufficient to meet the increasing demand and very soon will become exhausted. Pollution, global warming, and inflated oil prices have led the quest for renewable energy sources. Algal biofuels represent a potential source of renewable energy. Algae, as the third generation feedstock, are suitable for biodiesel and bioethanol production due to their quick growth, excellent biomass yield, and high lipid and carbohydrate contents. With their huge potential, algae are expected to surpass the first and second generation feedstocks. Only a few thousand algal species have been investigated as possible biofuel sources, and none of them was ideal. This review summarizes the current status of algal biofuels, important steps of algal biofuel production, and the major commercial production challenges.

Suggested Citation

  • Marwa G. Saad & Noura S. Dosoky & Mohamed S. Zoromba & Hesham M. Shafik, 2019. "Algal Biofuels: Current Status and Key Challenges," Energies, MDPI, vol. 12(10), pages 1-22, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1920-:d:232708
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/10/1920/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/10/1920/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dutta, Kasturi & Daverey, Achlesh & Lin, Jih-Gaw, 2014. "Evolution retrospective for alternative fuels: First to fourth generation," Renewable Energy, Elsevier, vol. 69(C), pages 114-122.
    2. Timothy A. Wise & Emily Cole, 2015. "Mandating Food Insecurity: The Global Impacts of Rising Biofuel Mandates and Targets," GDAE Working Papers 15-01, GDAE, Tufts University.
    3. Zamalloa, Carlos & Boon, Nico & Verstraete, Willy, 2012. "Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions," Applied Energy, Elsevier, vol. 92(C), pages 733-738.
    4. Tang, Haiying & Abunasser, Nadia & Garcia, M.E.D. & Chen, Meng & Simon Ng, K.Y. & Salley, Steven O., 2011. "Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel," Applied Energy, Elsevier, vol. 88(10), pages 3324-3330.
    5. Rawat, I. & Ranjith Kumar, R. & Mutanda, T. & Bux, F., 2013. "Biodiesel from microalgae: A critical evaluation from laboratory to large scale production," Applied Energy, Elsevier, vol. 103(C), pages 444-467.
    6. Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
    7. Jon Van Wagenen & Tyler W. Miller & Sam Hobbs & Paul Hook & Braden Crowe & Michael Huesemann, 2012. "Effects of Light and Temperature on Fatty Acid Production in Nannochloropsis S alina," Energies, MDPI, vol. 5(3), pages 1-10, March.
    8. Khan, Shakeel A. & Rashmi & Hussain, Mir Z. & Prasad, S. & Banerjee, U.C., 2009. "Prospects of biodiesel production from microalgae in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2361-2372, December.
    9. Huang, GuanHua & Chen, Feng & Wei, Dong & Zhang, XueWu & Chen, Gu, 2010. "Biodiesel production by microalgal biotechnology," Applied Energy, Elsevier, vol. 87(1), pages 38-46, January.
    10. Razzak, Shaikh Abdur & Ali, Saad Aldin M. & Hossain, Mohammad Mozahar & deLasa, Hugo, 2017. "Biological CO2 fixation with production of microalgae in wastewater – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 379-390.
    11. Fasahati, Peyman & Woo, Hee Chul & Liu, J. Jay, 2015. "Industrial-scale bioethanol production from brown algae: Effects of pretreatment processes on plant economics," Applied Energy, Elsevier, vol. 139(C), pages 175-187.
    12. Rizzo, Andrea Maria & Prussi, Matteo & Bettucci, Lorenzo & Libelli, Ilaria Marsili & Chiaramonti, David, 2013. "Characterization of microalga Chlorella as a fuel and its thermogravimetric behavior," Applied Energy, Elsevier, vol. 102(C), pages 24-31.
    13. Saba, Beenish & Christy, Ann D. & Yu, Zhongtang & Co, Anne C., 2017. "Sustainable power generation from bacterio-algal microbial fuel cells (MFCs): An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 75-84.
    14. Shuba, Eyasu Shumbulo & Kifle, Demeke, 2018. "Microalgae to biofuels: ‘Promising’ alternative and renewable energy, review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 743-755.
    15. Brennan, Liam & Owende, Philip, 2010. "Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 557-577, February.
    16. Brand, Steffen & Hardi, Flabianus & Kim, Jaehoon & Suh, Dong Jin, 2014. "Effect of heating rate on biomass liquefaction: Differences between subcritical water and supercritical ethanol," Energy, Elsevier, vol. 68(C), pages 420-427.
    17. Passos, Fabiana & Solé, Maria & García, Joan & Ferrer, Ivet, 2013. "Biogas production from microalgae grown in wastewater: Effect of microwave pretreatment," Applied Energy, Elsevier, vol. 108(C), pages 168-175.
    18. Hirano, Atsushi & Ueda, Ryohei & Hirayama, Shin & Ogushi, Yasuyuki, 1997. "CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation," Energy, Elsevier, vol. 22(2), pages 137-142.
    19. Szczęsna Antczak, Mirosława & Kubiak, Aneta & Antczak, Tadeusz & Bielecki, Stanisław, 2009. "Enzymatic biodiesel synthesis – Key factors affecting efficiency of the process," Renewable Energy, Elsevier, vol. 34(5), pages 1185-1194.
    20. Naik, S.N. & Goud, Vaibhav V. & Rout, Prasant K. & Dalai, Ajay K., 2010. "Production of first and second generation biofuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 578-597, February.
    21. Chiaramonti, David & Prussi, Matteo & Buffi, Marco & Rizzo, Andrea Maria & Pari, Luigi, 2017. "Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production," Applied Energy, Elsevier, vol. 185(P2), pages 963-972.
    22. Rizwan, Muhammad & Lee, Jay H. & Gani, Rafiqul, 2015. "Optimal design of microalgae-based biorefinery: Economics, opportunities and challenges," Applied Energy, Elsevier, vol. 150(C), pages 69-79.
    23. Saladini, Fabrizio & Patrizi, Nicoletta & Pulselli, Federico M. & Marchettini, Nadia & Bastianoni, Simone, 2016. "Guidelines for emergy evaluation of first, second and third generation biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 221-227.
    24. Suganya, T. & Varman, M. & Masjuki, H.H. & Renganathan, S., 2016. "Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 909-941.
    25. Shuping, Zou & Yulong, Wu & Mingde, Yang & Kaleem, Imdad & Chun, Li & Tong, Junmao, 2010. "Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake," Energy, Elsevier, vol. 35(12), pages 5406-5411.
    26. Charles A.S. Hall & Bruce E. Dale & David Pimentel, 2011. "Seeking to Understand the Reasons for Different Energy Return on Investment (EROI) Estimates for Biofuels," Sustainability, MDPI, vol. 3(12), pages 1-20, December.
    27. Adeniyi, Oladapo Martins & Azimov, Ulugbek & Burluka, Alexey, 2018. "Algae biofuel: Current status and future applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 316-335.
    28. Zheng, Yubin & Li, Tingting & Yu, Xiaochen & Bates, Philip D. & Dong, Tao & Chen, Shulin, 2013. "High-density fed-batch culture of a thermotolerant microalga Chlorella sorokiniana for biofuel production," Applied Energy, Elsevier, vol. 108(C), pages 281-287.
    29. Raheem, Abdul & Wan Azlina, W.A.K.G. & Taufiq Yap, Y.H. & Danquah, Michael K. & Harun, Razif, 2015. "Thermochemical conversion of microalgal biomass for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 990-999.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guido Busca, 2021. "Production of Gasolines and Monocyclic Aromatic Hydrocarbons: From Fossil Raw Materials to Green Processes," Energies, MDPI, vol. 14(13), pages 1-32, July.
    2. Min-Hao Yuan & Chia-Chi Chang & Tsung-Chi Hsu & Je-Lueng Shie & Yi-Hung Chen & Ching-Yuan Chang & Cheng-Fang Lin & Chang-Ping Yu & Chao-Hsiung Wu & Manh Van Do & Far-Ching Lin & Duu-Jong Lee & Bo-Lian, 2021. "A Technical Analysis of Solid Recovered Fuel from Torrefied Jatropha Seed Residue via a Two-Stage Mechanical Screw Press and Solvent Extraction Process," Energies, MDPI, vol. 14(23), pages 1-13, November.
    3. Beata Brzychczyk & Tomasz Hebda & Norbert Pedryc, 2020. "The Influence of Artificial Lighting Systems on the Cultivation of Algae: The Example of Chlorella vulgaris," Energies, MDPI, vol. 13(22), pages 1-14, November.
    4. Beata Brzychczyk & Tomasz Hebda & Jakub Fitas & Jan Giełżecki, 2020. "The Follow-up Photobioreactor Illumination System for the Cultivation of Photosynthetic Microorganisms," Energies, MDPI, vol. 13(5), pages 1-9, March.
    5. Hao Yuan & Yi Wang & Yanaoming Xi & Zeyi Jiang & Xinru Zhang & Xinyu Wang & Xinxin Zhang, 2020. "Light-Emitting Diode Power Conversion Capability and CO 2 Fixation Rate of Microalgae Biofilm Cultured Under Different Light Spectra," Energies, MDPI, vol. 13(7), pages 1-10, March.
    6. Prabhakar Sharma & Ajay Chhillar & Zafar Said & Saim Memon, 2021. "Exploring the Exhaust Emission and Efficiency of Algal Biodiesel Powered Compression Ignition Engine: Application of Box–Behnken and Desirability Based Multi-Objective Response Surface Methodology," Energies, MDPI, vol. 14(18), pages 1-22, September.
    7. Minghao Chen & Yixuan Chen & Qingtao Zhang, 2021. "A Review of Energy Consumption in the Acquisition of Bio-Feedstock for Microalgae Biofuel Production," Sustainability, MDPI, vol. 13(16), pages 1-22, August.
    8. Marcin Dębowski & Marcin Zieliński & Joanna Kazimierowicz & Natalia Kujawska & Szymon Talbierz, 2020. "Microalgae Cultivation Technologies as an Opportunity for Bioenergetic System Development—Advantages and Limitations," Sustainability, MDPI, vol. 12(23), pages 1-37, November.
    9. Zane Vincevica-Gaile & Varvara Sachpazidou & Valdis Bisters & Maris Klavins & Olga Anne & Inga Grinfelde & Emil Hanc & William Hogland & Muhammad Asim Ibrahim & Yahya Jani & Mait Kriipsalu & Divya Pal, 2022. "Applying Macroalgal Biomass as an Energy Source: Utility of the Baltic Sea Beach Wrack for Thermochemical Conversion," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    10. Radek Šulc & Jan Dymák, 2021. "Hydrodynamics and Mass Transfer in a Concentric Internal Jet-Loop Airlift Bioreactor Equipped with a Deflector," Energies, MDPI, vol. 14(14), pages 1-28, July.
    11. Tamás Mizik, 2021. "Economic Aspects and Sustainability of Ethanol Production—A Systematic Literature Review," Energies, MDPI, vol. 14(19), pages 1-25, September.
    12. Xinru Zhang & Hao Yuan & Libo Guan & Xinyu Wang & Yi Wang & Zeyi Jiang & Limei Cao & Xinxin Zhang, 2019. "Influence of Photoperiods on Microalgae Biofilm: Photosynthetic Performance, Biomass Yield, and Cellular Composition," Energies, MDPI, vol. 12(19), pages 1-10, September.
    13. Esveidi Montserrat Valdovinos-García & Juan Barajas-Fernández & María de los Ángeles Olán-Acosta & Moisés Abraham Petriz-Prieto & Adriana Guzmán-López & Micael Gerardo Bravo-Sánchez, 2020. "Techno-Economic Study of CO 2 Capture of a Thermoelectric Plant Using Microalgae ( Chlorella vulgaris ) for Production of Feedstock for Bioenergy," Energies, MDPI, vol. 13(2), pages 1-19, January.
    14. Małgorzata Hawrot-Paw & Adam Koniuszy & Małgorzata Gałczyńska, 2020. "Sustainable Production of Monoraphidium Microalgae Biomass as a Source of Bioenergy," Energies, MDPI, vol. 13(22), pages 1-13, November.
    15. Rahul Prasad Singh & Priya Yadav & Indrajeet Kumar & Manoj Kumar Solanki & Rajib Roychowdhury & Ajay Kumar & Rajan Kumar Gupta, 2023. "Advancement of Abiotic Stresses for Microalgal Lipid Production and Its Bioprospecting into Sustainable Biofuels," Sustainability, MDPI, vol. 15(18), pages 1-36, September.
    16. Mizik, Tamás, 2022. "A bioetanol-termelés gazdasági és fenntarthatósági vetületei [Economic and sustainability aspects of bioethanol production]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(10), pages 1213-1241.
    17. Ricardo N. Coimbra & Carla Escapa & Marta Otero, 2019. "Comparative Thermogravimetric Assessment on the Combustion of Coal, Microalgae Biomass and Their Blend," Energies, MDPI, vol. 12(15), pages 1-22, August.
    18. Merrylin Jayaseelan & Mohamed Usman & Adishkumar Somanathan & Sivashanmugam Palani & Gunasekaran Muniappan & Rajesh Banu Jeyakumar, 2021. "Microalgal Production of Biofuels Integrated with Wastewater Treatment," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    19. Elena Spennati & Alessandro Alberto Casazza & Attilio Converti, 2020. "Winery Wastewater Treatment by Microalgae to Produce Low-Cost Biomass for Energy Production Purposes," Energies, MDPI, vol. 13(10), pages 1-14, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adeniyi, Oladapo Martins & Azimov, Ulugbek & Burluka, Alexey, 2018. "Algae biofuel: Current status and future applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 316-335.
    2. Li, Fanghua & Srivatsa, Srikanth Chakravartula & Bhattacharya, Sankar, 2019. "A review on catalytic pyrolysis of microalgae to high-quality bio-oil with low oxygeneous and nitrogenous compounds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 481-497.
    3. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    4. Zhang, Bing & Li, Wei & Guo, Yuan & Zhang, Zhiqiang & Shi, Wenxin & Cui, Fuyi & Lens, Piet N.L. & Tay, Joo Hwa, 2020. "Microalgal-bacterial consortia: From interspecies interactions to biotechnological applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    5. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    6. Sirajunnisa, Abdul Razack & Surendhiran, Duraiarasan, 2016. "Algae – A quintessential and positive resource of bioethanol production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 248-267.
    7. Sharma, Yogesh Chandra & Singh, Veena, 2017. "Microalgal biodiesel: A possible solution for India’s energy security," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 72-88.
    8. Cuevas-Castillo, Gabriela A. & Navarro-Pineda, Freddy S. & Baz Rodríguez, Sergio A. & Sacramento Rivero, Julio C., 2020. "Advances on the processing of microalgal biomass for energy-driven biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    9. Fazal, Tahir & Mushtaq, Azeem & Rehman, Fahad & Ullah Khan, Asad & Rashid, Naim & Farooq, Wasif & Rehman, Muhammad Saif Ur & Xu, Jian, 2018. "Bioremediation of textile wastewater and successive biodiesel production using microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3107-3126.
    10. Joshi, Girdhar & Pandey, Jitendra K. & Rana, Sravendra & Rawat, Devendra S., 2017. "Challenges and opportunities for the application of biofuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 850-866.
    11. Marcin Dębowski & Marcin Zieliński & Joanna Kazimierowicz & Natalia Kujawska & Szymon Talbierz, 2020. "Microalgae Cultivation Technologies as an Opportunity for Bioenergetic System Development—Advantages and Limitations," Sustainability, MDPI, vol. 12(23), pages 1-37, November.
    12. Maity, Jyoti Prakash & Bundschuh, Jochen & Chen, Chien-Yen & Bhattacharya, Prosun, 2014. "Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives – A mini review," Energy, Elsevier, vol. 78(C), pages 104-113.
    13. Jankowska, Ewelina & Sahu, Ashish K. & Oleskowicz-Popiel, Piotr, 2017. "Biogas from microalgae: Review on microalgae's cultivation, harvesting and pretreatment for anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 692-709.
    14. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    15. Giwa, Adewale & Adeyemi, Idowu & Dindi, Abdallah & Lopez, Celia García-Baños & Lopresto, Catia Giovanna & Curcio, Stefano & Chakraborty, Sudip, 2018. "Techno-economic assessment of the sustainability of an integrated biorefinery from microalgae and Jatropha: A review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 239-257.
    16. Raheem, Abdul & Wan Azlina, W.A.K.G. & Taufiq Yap, Y.H. & Danquah, Michael K. & Harun, Razif, 2015. "Thermochemical conversion of microalgal biomass for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 990-999.
    17. Vladimir Heredia & Olivier Gonçalves & Luc Marchal & Jeremy Pruvost, 2021. "Producing Energy-Rich Microalgae Biomass for Liquid Biofuels: Influence of Strain Selection and Culture Conditions," Energies, MDPI, vol. 14(5), pages 1-15, February.
    18. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu, 2020. "Experimental assessment on the regulated and unregulated emissions of DI diesel engine fuelled with Chlorella emersonii methyl ester (CEME)," Renewable Energy, Elsevier, vol. 151(C), pages 88-102.
    19. Banerjee, Sanjukta & Banerjee, Srijoni & Ghosh, Ananta K. & Das, Debabrata, 2020. "Maneuvering the genetic and metabolic pathway for improving biofuel production in algae: Present status and future prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    20. Ahmad, A.L. & Yasin, N.H. Mat & Derek, C.J.C. & Lim, J.K., 2011. "Microalgae as a sustainable energy source for biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 584-593, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1920-:d:232708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.