IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i2p413-d308777.html
   My bibliography  Save this article

Techno-Economic Study of CO 2 Capture of a Thermoelectric Plant Using Microalgae ( Chlorella vulgaris ) for Production of Feedstock for Bioenergy

Author

Listed:
  • Esveidi Montserrat Valdovinos-García

    (División Académica Multidisciplinaria de Jalpa de Méndez (DAMJM), Universidad Juárez Autónoma de Tabasco (UJAT), Carret. Estatal Libre Villahermosa-Comalcalco Km. 27+000 s/n Ranchería Ribera Alta. Jalpa de Méndez, Tabasco C.P. 86205, Mexico)

  • Juan Barajas-Fernández

    (División Académica de Ingeniería y Arquitectura (DAIA), Universidad Juárez Autónoma de Tabasco (UJAT), Carret. Cunduacán-Jalpa de Méndez Km 1. Col. La Esmeralda. Cunduacán, Tabasco C.P. 86690, Mexico)

  • María de los Ángeles Olán-Acosta

    (División Académica de Ingeniería y Arquitectura (DAIA), Universidad Juárez Autónoma de Tabasco (UJAT), Carret. Cunduacán-Jalpa de Méndez Km 1. Col. La Esmeralda. Cunduacán, Tabasco C.P. 86690, Mexico)

  • Moisés Abraham Petriz-Prieto

    (División Académica Multidisciplinaria de Jalpa de Méndez (DAMJM), Universidad Juárez Autónoma de Tabasco (UJAT), Carret. Estatal Libre Villahermosa-Comalcalco Km. 27+000 s/n Ranchería Ribera Alta. Jalpa de Méndez, Tabasco C.P. 86205, Mexico)

  • Adriana Guzmán-López

    (Departamento de Ciencias Básicas, Tecnológico Nacional de México en Celaya, Apartado Postal 57, Celaya 38010, Mexico)

  • Micael Gerardo Bravo-Sánchez

    (Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México en Celaya, Apartado Postal 57, Celaya 38010, Mexico)

Abstract

A current concern is the increase in greenhouse gas emissions, mainly CO 2 , with anthropogenic sources being the main contributors. Microalgae have greater capacity than terrestrial plants to capture CO 2 , with this being an attraction for using them as capture systems. This study aims at the techno-economic evaluation of microalgae biomass production, while only considering technologies with industrial scaling potential. Energy consumption and operating costs are considered as parameters for the evaluation. In addition, the capture of CO 2 from a thermoelectric plant is analyzed, as a carbon source for the cultivation of microalgae. 24 scenarios were evaluated while using process simulation tools (SuperPro Designer), being generated by the combination of cultivations in raceway pond, primary harvest with three types of flocculants, secondary harvest with centrifugation and three filtering technologies, and finally the drying evaluated with Spray and Drum Dryer. Low biomass productivity, 12.7 g/m 2 /day, was considered, achieving a capture of 102.13 tons of CO 2 /year in 1 ha for the cultivation area. The scenarios that included centrifugation and vacuum filtration are the ones with the highest energy consumption. The operating costs range from US $ 4.75–6.55/kg of dry biomass. The choice of the best scenario depends on the final use of biomass.

Suggested Citation

  • Esveidi Montserrat Valdovinos-García & Juan Barajas-Fernández & María de los Ángeles Olán-Acosta & Moisés Abraham Petriz-Prieto & Adriana Guzmán-López & Micael Gerardo Bravo-Sánchez, 2020. "Techno-Economic Study of CO 2 Capture of a Thermoelectric Plant Using Microalgae ( Chlorella vulgaris ) for Production of Feedstock for Bioenergy," Energies, MDPI, vol. 13(2), pages 1-19, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:413-:d:308777
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/2/413/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/2/413/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Songmei & Zhu, Johnny & Dai, Lingmei & Zhao, Xuebing & Liu, Dehua & Du, Wei, 2016. "A novel process on lipid extraction from microalgae for biodiesel production," Energy, Elsevier, vol. 115(P1), pages 963-968.
    2. Rashid, Naim & Ur Rehman, Muhammad Saif & Sadiq, Madeha & Mahmood, Tariq & Han, Jong-In, 2014. "Current status, issues and developments in microalgae derived biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 760-778.
    3. John Benemann, 2013. "Microalgae for Biofuels and Animal Feeds," Energies, MDPI, vol. 6(11), pages 1-18, November.
    4. Sandra Lage & Zivan Gojkovic & Christiane Funk & Francesco G. Gentili, 2018. "Algal Biomass from Wastewater and Flue Gases as a Source of Bioenergy," Energies, MDPI, vol. 11(3), pages 1-30, March.
    5. Michael Borowitzka & Navid Moheimani, 2013. "Sustainable biofuels from algae," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(1), pages 13-25, January.
    6. Florian Delrue & Pablo David Álvarez-Díaz & Sophie Fon-Sing & Gatien Fleury & Jean-François Sassi, 2016. "The Environmental Biorefinery: Using Microalgae to Remediate Wastewater, a Win-Win Paradigm," Energies, MDPI, vol. 9(3), pages 1-19, February.
    7. Shareq Mohd Nazir & Olav Bolland & Shahriar Amini, 2018. "Analysis of Combined Cycle Power Plants with Chemical Looping Reforming of Natural Gas and Pre-Combustion CO 2 Capture," Energies, MDPI, vol. 11(1), pages 1-13, January.
    8. Rawat, I. & Ranjith Kumar, R. & Mutanda, T. & Bux, F., 2013. "Biodiesel from microalgae: A critical evaluation from laboratory to large scale production," Applied Energy, Elsevier, vol. 103(C), pages 444-467.
    9. Milano, Jassinnee & Ong, Hwai Chyuan & Masjuki, H.H. & Chong, W.T. & Lam, Man Kee & Loh, Ping Kwan & Vellayan, Viknes, 2016. "Microalgae biofuels as an alternative to fossil fuel for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 180-197.
    10. Singh, S.P. & Singh, Priyanka, 2014. "Effect of CO2 concentration on algal growth: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 172-179.
    11. Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
    12. Ana L. Gonçalves & Maria C. M. Alvim-Ferraz & Fernando G. Martins & Manuel Simões & José C. M. Pires, 2016. "Integration of Microalgae-Based Bioenergy Production into a Petrochemical Complex: Techno-Economic Assessment," Energies, MDPI, vol. 9(4), pages 1-17, March.
    13. Marwa G. Saad & Noura S. Dosoky & Mohamed S. Zoromba & Hesham M. Shafik, 2019. "Algal Biofuels: Current Status and Key Challenges," Energies, MDPI, vol. 12(10), pages 1-22, May.
    14. Ahmad, A.L. & Yasin, N.H. Mat & Derek, C.J.C. & Lim, J.K., 2011. "Microalgae as a sustainable energy source for biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 584-593, January.
    15. Shuba, Eyasu Shumbulo & Kifle, Demeke, 2018. "Microalgae to biofuels: ‘Promising’ alternative and renewable energy, review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 743-755.
    16. Brennan, Liam & Owende, Philip, 2010. "Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 557-577, February.
    17. Muhammad Aminul Islam & Marie Magnusson & Richard J. Brown & Godwin A. Ayoko & Md. Nurun Nabi & Kirsten Heimann, 2013. "Microalgal Species Selection for Biodiesel Production Based on Fuel Properties Derived from Fatty Acid Profiles," Energies, MDPI, vol. 6(11), pages 1-27, October.
    18. Pires, J.C.M. & Alvim-Ferraz, M.C.M. & Martins, F.G. & Simões, M., 2012. "Carbon dioxide capture from flue gases using microalgae: Engineering aspects and biorefinery concept," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3043-3053.
    19. Pragya, Namita & Pandey, Krishan K. & Sahoo, P.K., 2013. "A review on harvesting, oil extraction and biofuels production technologies from microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 159-171.
    20. Faried, M. & Samer, M. & Abdelsalam, E. & Yousef, R.S. & Attia, Y.A. & Ali, A.S., 2017. "Biodiesel production from microalgae: Processes, technologies and recent advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 893-913.
    21. Baral, Saroj S. & Singh, Kaustub & Sharma, Prabudh, 2015. "The potential of sustainable algal biofuel production using CO2 from thermal power plant in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1061-1074.
    22. Bahadar, Ali & Bilal Khan, M., 2013. "Progress in energy from microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 128-148.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robab Salami & Masoumeh Kordi & Parisa Bolouri & Nasser Delangiz & Behnam Asgari Lajayer, 2021. "Algae-Based Biorefinery as a Sustainable Renewable Resource," Circular Economy and Sustainability,, Springer.
    2. Rodrigo Salvador & Reinalda Blanco Pereira & Gabriel Fernandes Sales & Vanessa Campana Vergani Oliveira & Anthony Halog & Antonio C. Francisco, 2022. "Current Panorama, Practice Gaps, and Recommendations to Accelerate the Transition to a Circular Bioeconomy in Latin America and the Caribbean," Circular Economy and Sustainability,, Springer.
    3. Razm, Sobhan & Brahimi, Nadjib & Hammami, Ramzi & Dolgui, Alexandre, 2023. "A production planning model for biorefineries with biomass perishability and biofuel transformation," International Journal of Production Economics, Elsevier, vol. 258(C).
    4. Aurelia Rybak & Aleksandra Rybak, 2021. "Methods of Ensuring Energy Security with the Use of Hard Coal—The Case of Poland," Energies, MDPI, vol. 14(18), pages 1-25, September.
    5. Edgar Gutierrez-Franco & Andres Polo & Nicolas Clavijo-Buritica & Luis Rabelo, 2021. "Multi-Objective Optimization to Support the Design of a Sustainable Supply Chain for the Generation of Biofuels from Forest Waste," Sustainability, MDPI, vol. 13(14), pages 1-27, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Menegazzo, Mariana Lara & Fonseca, Gustavo Graciano, 2019. "Biomass recovery and lipid extraction processes for microalgae biofuels production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 87-107.
    2. Fazal, Tahir & Mushtaq, Azeem & Rehman, Fahad & Ullah Khan, Asad & Rashid, Naim & Farooq, Wasif & Rehman, Muhammad Saif Ur & Xu, Jian, 2018. "Bioremediation of textile wastewater and successive biodiesel production using microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3107-3126.
    3. Shah, Syed Hasnain & Raja, Iftikhar Ahmed & Rizwan, Muhammad & Rashid, Naim & Mahmood, Qaisar & Shah, Fayyaz Ali & Pervez, Arshid, 2018. "Potential of microalgal biodiesel production and its sustainability perspectives in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 76-92.
    4. Chen, Jiaxin & Li, Ji & Dong, Wenyi & Zhang, Xiaolei & Tyagi, Rajeshwar D. & Drogui, Patrick & Surampalli, Rao Y., 2018. "The potential of microalgae in biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 336-346.
    5. Enamala, Manoj Kumar & Enamala, Swapnika & Chavali, Murthy & Donepudi, Jagadish & Yadavalli, Rajasri & Kolapalli, Bhulakshmi & Aradhyula, Tirumala Vasu & Velpuri, Jeevitha & Kuppam, Chandrasekhar, 2018. "Production of biofuels from microalgae - A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 49-68.
    6. Li, Fanghua & Srivatsa, Srikanth Chakravartula & Bhattacharya, Sankar, 2019. "A review on catalytic pyrolysis of microalgae to high-quality bio-oil with low oxygeneous and nitrogenous compounds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 481-497.
    7. Mathimani, Thangavel & Mallick, Nirupama, 2018. "A comprehensive review on harvesting of microalgae for biodiesel – Key challenges and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1103-1120.
    8. Piloto-Rodríguez, Ramón & Sánchez-Borroto, Yisel & Melo-Espinosa, Eliezer Ahmed & Verhelst, Sebastian, 2017. "Assessment of diesel engine performance when fueled with biodiesel from algae and microalgae: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 833-842.
    9. Cuevas-Castillo, Gabriela A. & Navarro-Pineda, Freddy S. & Baz Rodríguez, Sergio A. & Sacramento Rivero, Julio C., 2020. "Advances on the processing of microalgal biomass for energy-driven biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    10. Raslavičius, Laurencas & Striūgas, Nerijus & Felneris, Mantas, 2018. "New insights into algae factories of the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 643-654.
    11. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    12. Aziz, Md Maniruzzaman A. & Kassim, Khairul Anuar & Shokravi, Zahra & Jakarni, Fauzan Mohd & Liu, Hong Yuan & Zaini, Nabilah & Tan, Lian See & Islam, A.B.M. Saiful & Shokravi, Hoofar, 2020. "Two-stage cultivation strategy for simultaneous increases in growth rate and lipid content of microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    13. Raheem, Abdul & Wan Azlina, W.A.K.G. & Taufiq Yap, Y.H. & Danquah, Michael K. & Harun, Razif, 2015. "Thermochemical conversion of microalgal biomass for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 990-999.
    14. Laamanen, Corey A. & Ross, Gregory M. & Scott, John A., 2016. "Flotation harvesting of microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 75-86.
    15. de Jesus, Sérgio S. & Ferreira, Gabriela F. & Moreira, Larissa S. & Filho, Rubens Maciel, 2020. "Biodiesel production from microalgae by direct transesterification using green solvents," Renewable Energy, Elsevier, vol. 160(C), pages 1283-1294.
    16. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    17. Pooja Kandimalla & Priyanka Vatte & Chandra Sekhar Rao Bandaru, 2021. "Phycoremediation of automobile exhaust gases using green microalgae," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6301-6322, April.
    18. Chaudry, Sofia & Bahri, Parisa A. & Moheimani, Navid R., 2015. "Pathways of processing of wet microalgae for liquid fuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1240-1250.
    19. Milano, Jassinnee & Ong, Hwai Chyuan & Masjuki, H.H. & Chong, W.T. & Lam, Man Kee & Loh, Ping Kwan & Vellayan, Viknes, 2016. "Microalgae biofuels as an alternative to fossil fuel for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 180-197.
    20. Muhammad Hanafi Azami & Mark Savill, 2017. "Pulse Detonation Assessment for Alternative Fuels," Energies, MDPI, vol. 10(3), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:413-:d:308777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.