IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i14p5801-d386619.html
   My bibliography  Save this article

Implementation of Floating Treatment Wetlands for Textile Wastewater Management: A Review

Author

Listed:
  • Fan Wei

    (Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning 530005, China)

  • Munazzam Jawad Shahid

    (Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan)

  • Ghalia S. H. Alnusairi

    (Department of Biology, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
    Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11451, Saudi Arabia)

  • Muhammad Afzal

    (Soil and Environmental Biotechnology Division, National Institute of Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan)

  • Aziz Khan

    (Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning 530005, China)

  • Mohamed A. El-Esawi

    (Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt)

  • Zohaib Abbas

    (Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan)

  • Kunhua Wei

    (Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning 530005, China)

  • Ihsan Elahi Zaheer

    (Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan)

  • Muhammad Rizwan

    (Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan)

  • Shafaqat Ali

    (Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan
    Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan)

Abstract

The textile industry is one of the most chemically intensive industries, and its wastewater is comprised of harmful dyes, pigments, dissolved/suspended solids, and heavy metals. The treatment of textile wastewater has become a necessary task before discharge into the environment. The textile effluent can be treated by conventional methods, however, the limitations of these techniques are high cost, incomplete removal, and production of concentrated sludge. This review illustrates recent knowledge about the application of floating treatment wetlands (FTWs) for remediation of textile wastewater. The FTWs system is a potential alternative technology for textile wastewater treatment. FTWs efficiently removed the dyes, pigments, organic matter, nutrients, heavy metals, and other pollutants from the textile effluent. Plants and bacteria are essential components of FTWs, which contribute to the pollutant removal process through their physical effects and metabolic process. Plants species with extensive roots structure and large biomass are recommended for vegetation on floating mats. The pollutant removal efficiency can be enhanced by the right selection of plants, managing plant coverage, improving aeration, and inoculation by specific bacterial strains. The proper installation and maintenance practices can further enhance the efficiency, sustainability, and aesthetic value of the FTWs. Further research is suggested to develop guidelines for the selection of right plants and bacterial strains for the efficient remediation of textile effluent by FTWs at large scales.

Suggested Citation

  • Fan Wei & Munazzam Jawad Shahid & Ghalia S. H. Alnusairi & Muhammad Afzal & Aziz Khan & Mohamed A. El-Esawi & Zohaib Abbas & Kunhua Wei & Ihsan Elahi Zaheer & Muhammad Rizwan & Shafaqat Ali, 2020. "Implementation of Floating Treatment Wetlands for Textile Wastewater Management: A Review," Sustainability, MDPI, vol. 12(14), pages 1-35, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5801-:d:386619
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/14/5801/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/14/5801/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Neeha Nawaz & Shafaqat Ali & Ghulam Shabir & Muhammad Rizwan & Muhammad Bilal Shakoor & Munazzam Jawad Shahid & Muhammad Afzal & Muhammad Arslan & Abeer Hashem & Elsayed Fathi Abd_Allah & Mohammed Nas, 2020. "Bacterial Augmented Floating Treatment Wetlands for Efficient Treatment of Synthetic Textile Dye Wastewater," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    2. David A. Keiser, 2019. "The Missing Benefits of Clean Water and the Role of Mismeasured Pollution," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(4), pages 669-707.
    3. Shafaqat Ali & Zohaib Abbas & Muhammad Rizwan & Ihsan Elahi Zaheer & İlkay Yavaş & Aydın Ünay & Mohamed M. Abdel-DAIM & May Bin-Jumah & Mirza Hasanuzzaman & Dimitris Kalderis, 2020. "Application of Floating Aquatic Plants in Phytoremediation of Heavy Metals Polluted Water: A Review," Sustainability, MDPI, vol. 12(5), pages 1-33, March.
    4. Yeh, Naichia & Yeh, Pulin & Chang, Yuan-Hsiou, 2015. "Artificial floating islands for environmental improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 616-622.
    5. Marye Mulugeta & Dessie Tibebe, 2019. "Assessment of Some Selected Metals from Textile Effluents in Amhara Region Using AAS and ICPOES," International Journal of Chemistry and Materials Research, Conscientia Beam, vol. 7(1), pages 27-31.
    6. Muhammad Fahid & Shafaqat Ali & Ghulam Shabir & Sajid Rashid Ahmad & Tahira Yasmeen & Muhammad Afzal & Muhammad Arslan & Afzal Hussain & Abeer Hashem & Elsayed Fathi Abd Allah & Mohammed Nasser Alyeme, 2020. "Cyperus laevigatus L. Enhances Diesel Oil Remediation in Synergism with Bacterial Inoculation in Floating Treatment Wetlands," Sustainability, MDPI, vol. 12(6), pages 1-15, March.
    7. Marye Mulugeta & Dessie Tibebe, 2019. "Assessment of Some Selected Metals from Textile Effluents in Amhara Region Using AAS and ICPOES," International Journal of Chemistry and Materials Research, Conscientia Beam, vol. 7(1), pages 27-31.
    8. Fazal, Tahir & Mushtaq, Azeem & Rehman, Fahad & Ullah Khan, Asad & Rashid, Naim & Farooq, Wasif & Rehman, Muhammad Saif Ur & Xu, Jian, 2018. "Bioremediation of textile wastewater and successive biodiesel production using microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3107-3126.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zan Li & Hongkun Zhang & Wenrui Jiang, 2021. "Research on the Sustainable Heterogeneous Catalyst Development for Photocatalytic Treatment of Phenol," Sustainability, MDPI, vol. 13(9), pages 1-12, April.
    2. Wei Wei & Yan Song, 2023. "Microbial–Plant Collaborative Remediation of Cd-Contaminated Wastewater and Soil in the Surrounding Area of Nuclear Power Plants and Risk Assessment," Sustainability, MDPI, vol. 15(15), pages 1-23, July.
    3. Patricia López-Casaperalta & Fredy Nicolás Molina-Rodríguez & Fernando Fernandez-F & Jeanette Fabiola Díaz-Quintanilla & Jaime E. Barreda-Del-Carpio & Julio Cesar Bernabe-Ortiz & Jorge Alberto Aguilar, 2022. "Optimization of a Textile Effluent Treatment System and Evaluation of the Feasibility to Be Reused as Influents in Textile Dyeing Processes," Sustainability, MDPI, vol. 14(23), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Momina Yasin & Muhammad Tauseef & Zaniab Zafar & Moazur Rahman & Ejazul Islam & Samina Iqbal & Muhammad Afzal, 2021. "Plant-Microbe Synergism in Floating Treatment Wetlands for the Enhanced Removal of Sodium Dodecyl Sulphate from Water," Sustainability, MDPI, vol. 13(5), pages 1-11, March.
    2. Hussain, Fida & Shah, Syed Z. & Ahmad, Habib & Abubshait, Samar A. & Abubshait, Haya A. & Laref, A. & Manikandan, A. & Kusuma, Heri S. & Iqbal, Munawar, 2021. "Microalgae an ecofriendly and sustainable wastewater treatment option: Biomass application in biofuel and bio-fertilizer production. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Monika Hejna & Elisabetta Onelli & Alessandra Moscatelli & Maurizio Bellotto & Cinzia Cristiani & Nadia Stroppa & Luciana Rossi, 2021. "Heavy-Metal Phytoremediation from Livestock Wastewater and Exploitation of Exhausted Biomass," IJERPH, MDPI, vol. 18(5), pages 1-16, February.
    4. Yiting Qi & Yu Bai & Xin Cao & Erpeng Li, 2022. "The Deformation and Shear Vortex Width of Flexible Vegetation Roots in an Artificial Floating Bed Channel," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    5. Karunakaran Gowri Ahila & Balasubramani Ravindran & Vasanthy Muthunarayanan & Dinh Duc Nguyen & Xuan Cuong Nguyen & Soon Woong Chang & Van Khanh Nguyen & Chandran Thamaraiselvi, 2020. "Phytoremediation Potential of Freshwater Macrophytes for Treating Dye-Containing Wastewater," Sustainability, MDPI, vol. 13(1), pages 1-13, December.
    6. Linhe Sun & Wei Wang & Fengjun Liu & Jixiang Liu & Fengfeng Du & Xiaojing Liu & Yajun Chang & Dongrui Yao, 2022. "Differences in Nitrogen and Phosphorus Removal under Different Temperatures in Oenanthe javanica Cultivars," Agriculture, MDPI, vol. 12(10), pages 1-15, October.
    7. Chen, Jiaxin & Li, Ji & Dong, Wenyi & Zhang, Xiaolei & Tyagi, Rajeshwar D. & Drogui, Patrick & Surampalli, Rao Y., 2018. "The potential of microalgae in biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 336-346.
    8. Muhammad Suleman & Muhammad Zafar & Ashfaq Ahmed & Muhammad Usman Rashid & Sadiq Hussain & Abdul Razzaq & Nur Atikah Mohidem & Tahir Fazal & Bilal Haider & Young-Kwon Park, 2021. "Castor Leaves-Based Biochar for Adsorption of Safranin from Textile Wastewater," Sustainability, MDPI, vol. 13(12), pages 1-18, June.
    9. Zaveri,Esha Dilip & Russ,Jason Daniel & Desbureaux,Sebastien Gael & Damania,Richard & Rodella,Aude-Sophie & Ribeiro Paiva De Souza,Giovanna, 2020. "The Nitrogen Legacy : The Long-Term Effects of Water Pollution on Human Capital," Policy Research Working Paper Series 9143, The World Bank.
    10. Wang, Qiushi & Zhu, Ziye & Wu, Gang & Zhang, Xiang & Zheng, Hongfei, 2018. "Energy analysis and experimental verification of a solar freshwater self-produced ecological film floating on the sea," Applied Energy, Elsevier, vol. 224(C), pages 510-526.
    11. Reinhart, Benjamin D. & Frankenberger, Jane R. & Hay, Christopher H. & Helmers, Matthew J., 2019. "Simulated water quality and irrigation benefits from drainage water recycling at two tile-drained sites in the U.S. Midwest," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    12. Preeti Parihar & Naveen Chand & Surindra Suthar, 2022. "Treatment of High Nutrient-Loaded Wastewater in a Constructed Floating Wetland with Different Configurations: Role of Lantana Biochar Addition," Sustainability, MDPI, vol. 14(23), pages 1-12, December.
    13. Hollingsworth, Alex J. & Konisky, David M. & Zirogiannis, Nikolaos, 2021. "The health consequences of excess emissions: Evidence from Texas," Journal of Environmental Economics and Management, Elsevier, vol. 108(C).
    14. Nuno Nunes & Carla Ragonezi & Carla S.S. Gouveia & Miguel Â.A. Pinheiro de Carvalho, 2021. "Review of Sewage Sludge as a Soil Amendment in Relation to Current International Guidelines: A Heavy Metal Perspective," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    15. David Wolf & Sathya Gopalakrishnan & H. Allen Klaiber, 2022. "Staying afloat: The effect of algae contamination on Lake Erie housing prices," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(5), pages 1701-1723, October.
    16. Yean Ling Pang & Yen Ying Quek & Steven Lim & Siew Hoong Shuit, 2023. "Review on Phytoremediation Potential of Floating Aquatic Plants for Heavy Metals: A Promising Approach," Sustainability, MDPI, vol. 15(2), pages 1-23, January.
    17. Carolina Faccio Demarco & Maurízio Silveira Quadro & Filipe Selau Carlos & Simone Pieniz & Luiza Beatriz Gamboa Araújo Morselli & Robson Andreazza, 2023. "Bioremediation of Aquatic Environments Contaminated with Heavy Metals: A Review of Mechanisms, Solutions and Perspectives," Sustainability, MDPI, vol. 15(2), pages 1-15, January.
    18. Sania Sahreen & Hamid Mukhtar, 2023. "Development of Bacterial Augmented Floating Treatment Wetlands System (FTWs) for Eco-Friendly Degradation of Malachite Green Dye in Water," Sustainability, MDPI, vol. 15(5), pages 1-22, March.
    19. Neeha Nawaz & Shafaqat Ali & Ghulam Shabir & Muhammad Rizwan & Muhammad Bilal Shakoor & Munazzam Jawad Shahid & Muhammad Afzal & Muhammad Arslan & Abeer Hashem & Elsayed Fathi Abd_Allah & Mohammed Nas, 2020. "Bacterial Augmented Floating Treatment Wetlands for Efficient Treatment of Synthetic Textile Dye Wastewater," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    20. Munazzam Jawad Shahid & Ameena A. AL-surhanee & Fayza Kouadri & Shafaqat Ali & Neeha Nawaz & Muhammad Afzal & Muhammad Rizwan & Basharat Ali & Mona H. Soliman, 2020. "Role of Microorganisms in the Remediation of Wastewater in Floating Treatment Wetlands: A Review," Sustainability, MDPI, vol. 12(14), pages 1-29, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5801-:d:386619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.