IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v81y2018ip2p3178-3185.html
   My bibliography  Save this article

Willingness of rural communities to adopt biogas systems in Pakistan: Critical factors and policy implications

Author

Listed:
  • Jan, Inayatullah
  • Akram, Waqar

Abstract

Biogas is a methane-rich gas that is produced by the anaerobic fermentation of organic material, such as animal dung. Pakistan has the sixth largest livestock-based economy in the world and thus demonstrates great potential for biogas production. The government has already started the Biogas Support Program (BSP) in a few selected areas of the country. With that in mind, this study was designed to determine a household's predicted willingness-to-adopt a biogas system in Khyber Pakhtunkhwa (KP) province. The study is based on primary data collected from four districts: Peshawar, Nowshera, Charsadda, and Mardan. Data was collected from 200 livestock farming households selected through an equal allocation technique. Probit analysis was used to identify those factors influencing the willingness of a household to adopt a biogas system. The results of the probit model reveal that the education level of the respondents, total daily electric shortfall, the effect of electric shortfall on childrens' education and female drudgery, and respondents' awareness regarding the pros and cons of using biogas were statistically significant factors. On the basis of p < 0.001 for the overall regression model, which means that the overall model was highly significant, it is concluded that the socio-economic characteristics of the population are the main factors contributing to the adoption of a biogas system in the area. The study recommends that increased public and private investments should be encouraged and the government's financial policies made in a pro-poor fashion for the large-scale promotion of biogas technology in Pakistan.

Suggested Citation

  • Jan, Inayatullah & Akram, Waqar, 2018. "Willingness of rural communities to adopt biogas systems in Pakistan: Critical factors and policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3178-3185.
  • Handle: RePEc:eee:rensus:v:81:y:2018:i:p2:p:3178-3185
    DOI: 10.1016/j.rser.2017.03.141
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211730401X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.03.141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Negro, Simona O. & Alkemade, Floortje & Hekkert, Marko P., 2012. "Why does renewable energy diffuse so slowly? A review of innovation system problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3836-3846.
    2. Walekhwa, Peter N. & Mugisha, Johnny & Drake, Lars, 2009. "Biogas energy from family-sized digesters in Uganda: Critical factors and policy implications," Energy Policy, Elsevier, vol. 37(7), pages 2754-2762, July.
    3. Taleghani, Giti & Shabani Kia, Akbar, 2005. "Technical–economical analysis of the Saveh biogas power plant," Renewable Energy, Elsevier, vol. 30(3), pages 441-446.
    4. Karekezi, Stephen & Kithyoma, Waeni, 2002. "Renewable energy strategies for rural Africa: is a PV-led renewable energy strategy the right approach for providing modern energy to the rural poor of sub-Saharan Africa?," Energy Policy, Elsevier, vol. 30(11-12), pages 1071-1086, September.
    5. Mwakaje, Agnes Godfrey, 2008. "Dairy farming and biogas use in Rungwe district, South-west Tanzania: A study of opportunities and constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2240-2252, October.
    6. Thomas P. Lyon & Haitao Yin, 2010. "Why Do States Adopt Renewable Portfolio Standards?: An Empirical Investigation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 133-158.
    7. Sardianou, E. & Genoudi, P., 2013. "Which factors affect the willingness of consumers to adopt renewable energies?," Renewable Energy, Elsevier, vol. 57(C), pages 1-4.
    8. Heltberg, Rasmus, 2005. "Factors determining household fuel choice in Guatemala," Environment and Development Economics, Cambridge University Press, vol. 10(3), pages 337-361, June.
    9. Pegels, Anna, 2010. "Renewable energy in South Africa: Potentials, barriers and options for support," Energy Policy, Elsevier, vol. 38(9), pages 4945-4954, September.
    10. Zhou, Zhongren & Wu, Wenliang & Chen, Qun & Chen, Shufeng, 2008. "Study on sustainable development of rural household energy in northern China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2227-2239, October.
    11. Chen, Yu & Yang, Gaihe & Sweeney, Sandra & Feng, Yongzhong, 2010. "Household biogas use in rural China: A study of opportunities and constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 545-549, January.
    12. Amigun, Bamikole & Musango, Josephine Kaviti & Stafford, William, 2011. "Biofuels and sustainability in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1360-1372, February.
    13. Narain, Urvashi & Gupta, Shreekant & van 't Veld, Klaas, 2008. "Poverty and resource dependence in rural India," Ecological Economics, Elsevier, vol. 66(1), pages 161-176, May.
    14. Akinbami, J. -F. K. & Ilori, M. O. & Oyebisi, T. O. & Akinwumi, I. O. & Adeoti, O., 2001. "Biogas energy use in Nigeria: current status, future prospects and policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(1), pages 97-112, March.
    15. Amjid, Syed S. & Bilal, Muhammad Q. & Nazir, Muhammad S. & Hussain, Altaf, 2011. "Biogas, renewable energy resource for Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2833-2837, August.
    16. Zhu, Bing & Zhang, Wenjun & Du, Jian & Zhou, Wenji & Qiu, Tong & Li, Qiang, 2011. "Adoption of renewable energy technologies (RETs): A survey on rural construction in China," Technology in Society, Elsevier, vol. 33(3), pages 223-230.
    17. Lee, Chien-Chiang & Chang, Chun-Ping, 2008. "Energy consumption and economic growth in Asian economies: A more comprehensive analysis using panel data," Resource and Energy Economics, Elsevier, vol. 30(1), pages 50-65, January.
    18. Jan, Inayatullah, 2012. "What makes people adopt improved cookstoves? Empirical evidence from rural northwest Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3200-3205.
    19. Charters, W.W.S, 2001. "Developing markets for renewable energy technologies," Renewable Energy, Elsevier, vol. 22(1), pages 217-222.
    20. Masera, Omar R. & Saatkamp, Barbara D. & Kammen, Daniel M., 2000. "From Linear Fuel Switching to Multiple Cooking Strategies: A Critique and Alternative to the Energy Ladder Model," World Development, Elsevier, vol. 28(12), pages 2083-2103, December.
    21. Nayyar, Zeeshan Alam & Zaigham, Nayyer Alam & Qadeer, Abdul, 2014. "Assessment of present conventional and non-conventional energy scenario of Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 543-553.
    22. Kabir, Humayun & Yegbemey, Rosaine N. & Bauer, Siegfried, 2013. "Factors determinant of biogas adoption in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 881-889.
    23. Karekezi, Stephen, 2002. "Renewables in Africa--meeting the energy needs of the poor," Energy Policy, Elsevier, vol. 30(11-12), pages 1059-1069, September.
    24. Rao, P. Venkateswara & Baral, Saroj S. & Dey, Ranjan & Mutnuri, Srikanth, 2010. "Biogas generation potential by anaerobic digestion for sustainable energy development in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2086-2094, September.
    25. Amigun, B. & Sigamoney, R. & von Blottnitz, H., 2008. "Commercialisation of biofuel industry in Africa: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 690-711, April.
    26. Ashraf Chaudhry, M. & Raza, R. & Hayat, S.A., 2009. "Renewable energy technologies in Pakistan: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1657-1662, August.
    27. Surendra, K.C. & Takara, Devin & Hashimoto, Andrew G. & Khanal, Samir Kumar, 2014. "Biogas as a sustainable energy source for developing countries: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 846-859.
    28. Chang, J. & Leung, Dennis Y. C. & Wu, C. Z. & Yuan, Z. H., 2003. "A review on the energy production, consumption, and prospect of renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(5), pages 453-468, October.
    29. Ding, Wenguang & Niu, Hewen & Chen, Jinsong & Du, Jun & Wu, Yang, 2012. "Influence of household biogas digester use on household energy consumption in a semi-arid rural region of northwest China," Applied Energy, Elsevier, vol. 97(C), pages 16-23.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gill-Wiehl, A. & Ray, I. & Kammen, D., 2021. "Is clean cooking affordable? A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Shazia Farhat Durrani & Inayatullah Jan & Munir Ahmad, 2021. "Do Primary Energy Consumption and Economic Growth Drive Each Other in Pakistan? Implications for Energy Policy," Biophysical Economics and Resource Quality, Springer, vol. 6(3), pages 1-10, September.
    3. He, Ke & Zhang, Junbiao & Zeng, Yangmei, 2018. "Rural households' willingness to accept compensation for energy utilization of crop straw in China," Energy, Elsevier, vol. 165(PA), pages 562-571.
    4. Mukeshimana, Marie Claire & Zhao, Zhen-Yu & Ahmad, Munir & Irfan, Muhammad, 2021. "Analysis on barriers to biogas dissemination in Rwanda: AHP approach," Renewable Energy, Elsevier, vol. 163(C), pages 1127-1137.
    5. Syed M Amir & Yonggong Liu & Ashfaq A Shah & Umer Khayyam & Zafar Mahmood, 2020. "Empirical study on influencing factors of biogas technology adoption in Khyber Pakhtunkhwa, Pakistan," Energy & Environment, , vol. 31(2), pages 308-329, March.
    6. Muhammad Ahmar & Fahad Ali & Yuexiang Jiang & Mamdooh Alwetaishi & Sherif S. M. Ghoneim, 2022. "Households’ Energy Choices in Rural Pakistan," Energies, MDPI, vol. 15(9), pages 1-23, April.
    7. M. Osei-Marfo & N. K. Vries & E. Awuah, 2022. "People’s perceptions on the use of human excreta for biogas generation in Ghana," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 352-376, January.
    8. Zanxin Wang & Saqib Ali & Ahsan Akbar & Farhan Rasool, 2020. "Determining the Influencing Factors of Biogas Technology Adoption Intention in Pakistan: The Moderating Role of Social Media," IJERPH, MDPI, vol. 17(7), pages 1-20, March.
    9. Stabridis, Omar & van Gameren, Edwin, 2018. "Exposure to firewood: Consequences for health and labor force participation in Mexico," World Development, Elsevier, vol. 107(C), pages 382-395.
    10. Roubík, Hynek & Mazancová, Jana & Rydval, Jan & Kvasnička, Roman, 2020. "Uncovering the dynamic complexity of the development of small–scale biogas technology through causal loops," Renewable Energy, Elsevier, vol. 149(C), pages 235-243.
    11. Ahmad, Munir & Wu, Yiyun, 2022. "Household-based factors affecting uptake of biogas plants in Bangladesh: Implications for sustainable development," Renewable Energy, Elsevier, vol. 194(C), pages 858-867.
    12. Jabeen, Gul & Yan, Qingyou & Ahmad, Munir & Fatima, Nousheen & Jabeen, Maria & Li, Heng & Qamar, Shoaib, 2020. "Household-based critical influence factors of biogas generation technology utilization: A case of Punjab province of Pakistan," Renewable Energy, Elsevier, vol. 154(C), pages 650-660.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uhunamure, S.E. & Nethengwe, N.S. & Tinarwo, D., 2019. "Correlating the factors influencing household decisions on adoption and utilisation of biogas technology in South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 264-273.
    2. Ding, Wenguang & Niu, Hewen & Chen, Jinsong & Du, Jun & Wu, Yang, 2012. "Influence of household biogas digester use on household energy consumption in a semi-arid rural region of northwest China," Applied Energy, Elsevier, vol. 97(C), pages 16-23.
    3. Karthik Rajendran & Solmaz Aslanzadeh & Mohammad J. Taherzadeh, 2012. "Household Biogas Digesters—A Review," Energies, MDPI, vol. 5(8), pages 1-32, August.
    4. Walekhwa, Peter N. & Mugisha, Johnny & Drake, Lars, 2009. "Biogas energy from family-sized digesters in Uganda: Critical factors and policy implications," Energy Policy, Elsevier, vol. 37(7), pages 2754-2762, July.
    5. Ortiz, Willington & Terrapon-Pfaff, Julia & Dienst, Carmen, 2017. "Understanding the diffusion of domestic biogas technologies. Systematic conceptualisation of existing evidence from developing and emerging countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1287-1299.
    6. Kelebe, Haftu Etsay & Ayimut, Kiros Meles & Berhe, Gebresilasse Hailu & Hintsa, Kidane, 2017. "Determinants for adoption decision of small scale biogas technology by rural households in Tigray, Ethiopia," Energy Economics, Elsevier, vol. 66(C), pages 272-278.
    7. Wassie, Yibeltal T. & Rannestad, Meley M. & Adaramola, Muyiwa S., 2021. "Determinants of household energy choices in rural sub-Saharan Africa: An example from southern Ethiopia," Energy, Elsevier, vol. 221(C).
    8. Litvine, Dorian & Gazull, Laurent & Dabat, Marie-Hélène, 2014. "Assessing the potential demand for biofuel by combining Economics and Psychology: A focus on proximity applied to Jatropha oil in Africa," Ecological Economics, Elsevier, vol. 100(C), pages 85-95.
    9. Jha, Priyanka & Schmidt, Stefan, 2021. "State of biofuel development in sub-Saharan Africa: How far sustainable?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    10. Suberu, Mohammed Yekini & Bashir, Nouruddeen & Mustafa, Mohd. Wazir, 2013. "Biogenic waste methane emissions and methane optimization for bioelectricity in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 643-654.
    11. Syed M Amir & Yonggong Liu & Ashfaq A Shah & Umer Khayyam & Zafar Mahmood, 2020. "Empirical study on influencing factors of biogas technology adoption in Khyber Pakhtunkhwa, Pakistan," Energy & Environment, , vol. 31(2), pages 308-329, March.
    12. Liu, Wenling & Spaargaren, Gert & Heerink, Nico & Mol, Arthur P.J. & Wang, Can, 2013. "Energy consumption practices of rural households in north China: Basic characteristics and potential for low carbon development," Energy Policy, Elsevier, vol. 55(C), pages 128-138.
    13. Maghanaki, M. Mohammadi & Ghobadian, B. & Najafi, G. & Galogah, R. Janzadeh, 2013. "Potential of biogas production in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 702-714.
    14. Amigun, B. & von Blottnitz, H., 2010. "Capacity-cost and location-cost analyses for biogas plants in Africa," Resources, Conservation & Recycling, Elsevier, vol. 55(1), pages 63-73.
    15. Roopnarain, Ashira & Adeleke, Rasheed, 2017. "Current status, hurdles and future prospects of biogas digestion technology in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1162-1179.
    16. Yaqoot, Mohammed & Diwan, Parag & Kandpal, Tara C., 2016. "Review of barriers to the dissemination of decentralized renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 477-490.
    17. Rupf, Gloria V. & Bahri, Parisa A. & de Boer, Karne & McHenry, Mark P., 2015. "Barriers and opportunities of biogas dissemination in Sub-Saharan Africa and lessons learned from Rwanda, Tanzania, China, India, and Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 468-476.
    18. Novice Patrick Bakehe, 2021. "What drives biogas adoption in rural Lesotho?," African Development Review, African Development Bank, vol. 33(2), pages 357-367, June.
    19. Okello, Collins & Pindozzi, Stefania & Faugno, Salvatore & Boccia, Lorenzo, 2013. "Development of bioenergy technologies in Uganda: A review of progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 55-63.
    20. Kabir, Humayun & Yegbemey, Rosaine N. & Bauer, Siegfried, 2013. "Factors determinant of biogas adoption in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 881-889.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:81:y:2018:i:p2:p:3178-3185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.