IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v146y2021ics1364032121004366.html
   My bibliography  Save this article

Life cycle greenhouse gas emissions of renewable gas technologies: A comparative review

Author

Listed:
  • Kolb, Sebastian
  • Plankenbühler, Thomas
  • Hofmann, Katharina
  • Bergerson, Joule
  • Karl, Jürgen

Abstract

Natural gas is an energy carrier of predominant significance for today's electricity and heating sectors. However, science heavily discusses the actual environmental burden of natural gas mainly due to the uncertainty in upstream methane losses during its extraction and transportation. In this context, numerous technologies pave the way for the production of renewable methane to replace natural gas: biomethane from anaerobic digestion of biomass, substitute natural gas (bio-SNG) from gasification and Power-to-Gas via water electrolysis and subsequent methanation. In recent years, numerous studies aimed at analysing the life cycle carbon intensity of those renewable gases. Given the high degree of freedom in the methodology of life cycle assessment (LCA) however, the studies are highly dependent on the respective boundary conditions and assumptions. To summarise and discuss the different findings, this review identifies and quantitatively analyses 30 life cycle assessment studies on the greenhouse gas emissions of renewable gases, comparing their results and deriving the main determinants on their environmental friendliness. A comparison between the results for renewable gases and existing literature reviews on the LCA of fossil natural gas shows the considerable emission reduction potential of renewable gases. This however requires the consideration and right implementation of the main influencing factors (inter alia the storage of digestate in closed tanks for biomethane, heat extraction of excess heat for bio-SNG, or the use of renewable electricity for Power-to-Gas) and is not a mere result of the technologies per se.

Suggested Citation

  • Kolb, Sebastian & Plankenbühler, Thomas & Hofmann, Katharina & Bergerson, Joule & Karl, Jürgen, 2021. "Life cycle greenhouse gas emissions of renewable gas technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
  • Handle: RePEc:eee:rensus:v:146:y:2021:i:c:s1364032121004366
    DOI: 10.1016/j.rser.2021.111147
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121004366
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Holmgren, Kristina M. & Berntsson, Thore S. & Andersson, Eva & Rydberg, Tomas, 2016. "Comparison of integration options for gasification-based biofuel production systems – Economic and greenhouse gas emission implications," Energy, Elsevier, vol. 111(C), pages 272-294.
    2. Wieland Hoppe & Nils Thonemann & Stefan Bringezu, 2018. "Life Cycle Assessment of Carbon Dioxide–Based Production of Methane and Methanol and Derived Polymers," Journal of Industrial Ecology, Yale University, vol. 22(2), pages 327-340, April.
    3. Neubert, Michael & Hauser, Alexander & Pourhossein, Babak & Dillig, Marius & Karl, Juergen, 2018. "Experimental evaluation of a heat pipe cooled structured reactor as part of a two-stage catalytic methanation process in power-to-gas applications," Applied Energy, Elsevier, vol. 229(C), pages 289-298.
    4. Di Salvo, Matteo & Wei, Max, 2019. "Synthesis of natural gas from thermochemical and power-to-gas pathways for industrial sector decarbonization in California," Energy, Elsevier, vol. 182(C), pages 1250-1264.
    5. Wang, Xiaoqiang & Nordlander, Eva & Thorin, Eva & Yan, Jinyue, 2013. "Microalgal biomethane production integrated with an existing biogas plant: A case study in Sweden," Applied Energy, Elsevier, vol. 112(C), pages 478-484.
    6. Nian, Victor, 2015. "Change impact analysis on the life cycle carbon emissions of energy systems – The nuclear example," Applied Energy, Elsevier, vol. 143(C), pages 437-450.
    7. Martin Thema & Tobias Weidlich & Manuel Hörl & Annett Bellack & Friedemann Mörs & Florian Hackl & Matthias Kohlmayer & Jasmin Gleich & Carsten Stabenau & Thomas Trabold & Michael Neubert & Felix Ortlo, 2019. "Biological CO 2 -Methanation: An Approach to Standardization," Energies, MDPI, vol. 12(9), pages 1-32, May.
    8. Blanco, Herib & Nijs, Wouter & Ruf, Johannes & Faaij, André, 2018. "Potential for hydrogen and Power-to-Liquid in a low-carbon EU energy system using cost optimization," Applied Energy, Elsevier, vol. 232(C), pages 617-639.
    9. Lewandowska-Bernat, Anna & Desideri, Umberto, 2018. "Opportunities of power-to-gas technology in different energy systems architectures," Applied Energy, Elsevier, vol. 228(C), pages 57-67.
    10. Wetterlund, Elisabeth & Leduc, Sylvain & Dotzauer, Erik & Kindermann, Georg, 2012. "Optimal localisation of biofuel production on a European scale," Energy, Elsevier, vol. 41(1), pages 462-472.
    11. Holmgren, Kristina M. & Berntsson, Thore & Andersson, Eva & Rydberg, Tomas, 2012. "System aspects of biomass gasification with methanol synthesis – Process concepts and energy analysis," Energy, Elsevier, vol. 45(1), pages 817-828.
    12. Mayumi, Kozo & Polimeni, John M., 2012. "Uranium reserve, nuclear fuel cycle delusion, CO2 emissions from the sea, and electricity supply: Reflections after the fuel meltdown of the Fukushima Nuclear Power Units," Ecological Economics, Elsevier, vol. 73(C), pages 1-6.
    13. Alamia, Alberto & Magnusson, Ingemar & Johnsson, Filip & Thunman, Henrik, 2016. "Well-to-wheel analysis of bio-methane via gasification, in heavy duty engines within the transport sector of the European Union," Applied Energy, Elsevier, vol. 170(C), pages 445-454.
    14. Vo, Truc T.Q. & Rajendran, Karthik & Murphy, Jerry D., 2018. "Can power to methane systems be sustainable and can they improve the carbon intensity of renewable methane when used to upgrade biogas produced from grass and slurry?," Applied Energy, Elsevier, vol. 228(C), pages 1046-1056.
    15. Niermann, M. & Timmerberg, S. & Drünert, S. & Kaltschmitt, M., 2021. "Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Buratti, C. & Barbanera, M. & Fantozzi, F., 2013. "Assessment of GHG emissions of biomethane from energy cereal crops in Umbria, Italy," Applied Energy, Elsevier, vol. 108(C), pages 128-136.
    17. Vo, Truc T.Q. & Xia, Ao & Wall, David M. & Murphy, Jerry D., 2017. "Use of surplus wind electricity in Ireland to produce compressed renewable gaseous transport fuel through biological power to gas systems," Renewable Energy, Elsevier, vol. 105(C), pages 495-504.
    18. Long, Aoife & Murphy, Jerry D., 2019. "Can green gas certificates allow for the accurate quantification of the energy supply and sustainability of biomethane from a range of sources for renewable heat and or transport?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    19. Singlitico, Alessandro & Goggins, Jamie & Monaghan, Rory F.D., 2019. "The role of life cycle assessment in the sustainable transition to a decarbonised gas network through green gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 16-28.
    20. Reuß, M. & Grube, T. & Robinius, M. & Preuster, P. & Wasserscheid, P. & Stolten, D., 2017. "Seasonal storage and alternative carriers: A flexible hydrogen supply chain model," Applied Energy, Elsevier, vol. 200(C), pages 290-302.
    21. Natarajan, Karthikeyan & Leduc, Sylvain & Pelkonen, Paavo & Tomppo, Erkki & Dotzauer, Erik, 2014. "Optimal locations for second generation Fischer Tropsch biodiesel production in Finland," Renewable Energy, Elsevier, vol. 62(C), pages 319-330.
    22. Speirs, Jamie & Balcombe, Paul & Johnson, Erin & Martin, Jeanne & Brandon, Nigel & Hawkes, Adam, 2018. "A greener gas grid: What are the options," Energy Policy, Elsevier, vol. 118(C), pages 291-297.
    23. Steubing, Bernhard & Ballmer, Isabel & Gassner, Martin & Gerber, Léda & Pampuri, Luca & Bischof, Sandro & Thees, Oliver & Zah, Rainer, 2014. "Identifying environmentally and economically optimal bioenergy plant sizes and locations: A spatial model of wood-based SNG value chains," Renewable Energy, Elsevier, vol. 61(C), pages 57-68.
    24. Wieland Hoppe & Stefan Bringezu, 2016. "Vergleichende Ökobilanz der CO2-basierten und konventionellen Methan- und Methanolproduktion," NachhaltigkeitsManagementForum | Sustainability Management Forum, Springer, vol. 24(1), pages 43-47, June.
    25. Parker, Nathan & Williams, Robert & Dominguez-Faus, Rosa & Scheitrum, Daniel, 2017. "Renewable natural gas in California: An assessment of the technical and economic potential," Energy Policy, Elsevier, vol. 111(C), pages 235-245.
    26. Czyrnek-Delêtre, Magdalena M. & Rocca, Stefania & Agostini, Alessandro & Giuntoli, Jacopo & Murphy, Jerry D., 2017. "Life cycle assessment of seaweed biomethane, generated from seaweed sourced from integrated multi-trophic aquaculture in temperate oceanic climates," Applied Energy, Elsevier, vol. 196(C), pages 34-50.
    27. Quarton, Christopher J. & Samsatli, Sheila, 2018. "Power-to-gas for injection into the gas grid: What can we learn from real-life projects, economic assessments and systems modelling?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 302-316.
    28. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    29. Tschiggerl, Karin & Sledz, Christian & Topic, Milan, 2018. "Considering environmental impacts of energy storage technologies: A life cycle assessment of power-to-gas business models," Energy, Elsevier, vol. 160(C), pages 1091-1100.
    30. Scholz, Marco & Melin, Thomas & Wessling, Matthias, 2013. "Transforming biogas into biomethane using membrane technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 199-212.
    31. Collet, Pierre & Flottes, Eglantine & Favre, Alain & Raynal, Ludovic & Pierre, Hélène & Capela, Sandra & Peregrina, Carlos, 2017. "Techno-economic and Life Cycle Assessment of methane production via biogas upgrading and power to gas technology," Applied Energy, Elsevier, vol. 192(C), pages 282-295.
    32. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    33. Holmgren, Kristina M. & Andersson, Eva & Berntsson, Thore & Rydberg, Tomas, 2014. "Gasification-based methanol production from biomass in industrial clusters: Characterisation of energy balances and greenhouse gas emissions," Energy, Elsevier, vol. 69(C), pages 622-637.
    34. Kolb, Sebastian & Dillig, Marius & Plankenbühler, Thomas & Karl, Jürgen, 2020. "The impact of renewables on electricity prices in Germany - An update for the years 2014–2018," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    35. Vitasari, Caecilia R. & Jurascik, Martin & Ptasinski, Krzysztof J., 2011. "Exergy analysis of biomass-to-synthetic natural gas (SNG) process via indirect gasification of various biomass feedstock," Energy, Elsevier, vol. 36(6), pages 3825-3837.
    36. Karl, Jürgen & Pröll, Tobias, 2018. "Steam gasification of biomass in dual fluidized bed gasifiers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 64-78.
    37. González-García, Sara & Iribarren, Diego & Susmozas, Ana & Dufour, Javier & Murphy, Richard J., 2012. "Life cycle assessment of two alternative bioenergy systems involving Salix spp. biomass: Bioethanol production and power generation," Applied Energy, Elsevier, vol. 95(C), pages 111-122.
    38. Blanco, Herib & Nijs, Wouter & Ruf, Johannes & Faaij, André, 2018. "Potential of Power-to-Methane in the EU energy transition to a low carbon system using cost optimization," Applied Energy, Elsevier, vol. 232(C), pages 323-340.
    39. Burkhardt, Jörg & Patyk, Andreas & Tanguy, Philippe & Retzke, Carsten, 2016. "Hydrogen mobility from wind energy – A life cycle assessment focusing on the fuel supply," Applied Energy, Elsevier, vol. 181(C), pages 54-64.
    40. Juraščík, Martin & Sues, Anna & Ptasinski, Krzysztof J., 2010. "Exergy analysis of synthetic natural gas production method from biomass," Energy, Elsevier, vol. 35(2), pages 880-888.
    41. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    42. Sues, Anna & Juraščík, Martin & Ptasinski, Krzysztof, 2010. "Exergetic evaluation of 5 biowastes-to-biofuels routes via gasification," Energy, Elsevier, vol. 35(2), pages 996-1007.
    43. Holmgren, Kristina M. & Berntsson, Thore S. & Andersson, Eva & Rydberg, Tomas, 2015. "The influence of biomass supply chains and by-products on the greenhouse gas emissions from gasification-based bio-SNG production systems," Energy, Elsevier, vol. 90(P1), pages 148-162.
    44. Patel, Madhumita & Zhang, Xiaolei & Kumar, Amit, 2016. "Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1486-1499.
    45. Adams, P.W.R. & Mezzullo, W.G. & McManus, M.C., 2015. "Biomass sustainability criteria: Greenhouse gas accounting issues for biogas and biomethane facilities," Energy Policy, Elsevier, vol. 87(C), pages 95-109.
    46. Lantz, Mikael & Börjesson, Pål, 2014. "Greenhouse gas and energyassessment of the biogas from co-digestion injected into the natural gas grid: A Swedish case-study including effects on soil properties," Renewable Energy, Elsevier, vol. 71(C), pages 387-395.
    47. Parra, David & Zhang, Xiaojin & Bauer, Christian & Patel, Martin K., 2017. "An integrated techno-economic and life cycle environmental assessment of power-to-gas systems," Applied Energy, Elsevier, vol. 193(C), pages 440-454.
    48. Singlitico, Alessandro & Kilgallon, Ian & Goggins, Jamie & Monaghan, Rory F.D., 2019. "GIS-based techno-economic optimisation of a regional supply chain for large-scale deployment of bio-SNG in a natural gas network," Applied Energy, Elsevier, vol. 250(C), pages 1036-1052.
    49. Koj, Jan Christian & Wulf, Christina & Zapp, Petra, 2019. "Environmental impacts of power-to-X systems - A review of technological and methodological choices in Life Cycle Assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 865-879.
    50. Thema, M. & Bauer, F. & Sterner, M., 2019. "Power-to-Gas: Electrolysis and methanation status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 775-787.
    51. Zhang, Xiaojin & Bauer, Christian & Mutel, Christopher L. & Volkart, Kathrin, 2017. "Life Cycle Assessment of Power-to-Gas: Approaches, system variations and their environmental implications," Applied Energy, Elsevier, vol. 190(C), pages 326-338.
    52. Leimert, Jonas M. & Neubert, Michael & Treiber, Peter & Dillig, Marius & Karl, Jürgen, 2018. "Combining the Heatpipe Reformer technology with hydrogen-intensified methanation for production of synthetic natural gas," Applied Energy, Elsevier, vol. 217(C), pages 37-46.
    53. Leduc, S. & Lundgren, J. & Franklin, O. & Dotzauer, E., 2010. "Location of a biomass based methanol production plant: A dynamic problem in northern Sweden," Applied Energy, Elsevier, vol. 87(1), pages 68-75, January.
    54. Dillig, Marius & Jung, Manuel & Karl, Jürgen, 2016. "The impact of renewables on electricity prices in Germany – An estimation based on historic spot prices in the years 2011–2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 7-15.
    55. Feng, Fei & Song, Guohui & Shen, Laihong & Xiao, Jun, 2017. "Environmental benefits analysis based on life cycle assessment of rice straw-based synthetic natural gas in China," Energy, Elsevier, vol. 139(C), pages 341-349.
    56. Abdon, Andreas & Zhang, Xiaojin & Parra, David & Patel, Martin K. & Bauer, Christian & Worlitschek, Jörg, 2017. "Techno-economic and environmental assessment of stationary electricity storage technologies for different time scales," Energy, Elsevier, vol. 139(C), pages 1173-1187.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stettler, Marc E.J. & Woo, Mino & Ainalis, Daniel & Achurra-Gonzalez, Pablo & Speirs, Jamie & Cooper, Jasmin & Lim, Dong-Ha & Brandon, Nigel & Hawkes, Adam, 2023. "Review of Well-to-Wheel lifecycle emissions of liquefied natural gas heavy goods vehicles," Applied Energy, Elsevier, vol. 333(C).
    2. Wen, Du & Aziz, Muhammad, 2022. "Techno-economic analyses of power-to-ammonia-to-power and biomass-to-ammonia-to-power pathways for carbon neutrality scenario," Applied Energy, Elsevier, vol. 319(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singlitico, Alessandro & Goggins, Jamie & Monaghan, Rory F.D., 2019. "The role of life cycle assessment in the sustainable transition to a decarbonised gas network through green gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 16-28.
    2. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Koj, Jan Christian & Wulf, Christina & Zapp, Petra, 2019. "Environmental impacts of power-to-X systems - A review of technological and methodological choices in Life Cycle Assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 865-879.
    4. Holmgren, Kristina M. & Berntsson, Thore S. & Andersson, Eva & Rydberg, Tomas, 2016. "Comparison of integration options for gasification-based biofuel production systems – Economic and greenhouse gas emission implications," Energy, Elsevier, vol. 111(C), pages 272-294.
    5. Keogh, Niamh & Corr, D. & Monaghan, R.F.D, 2022. "Biogenic renewable gas injection into natural gas grids: A review of technical and economic modelling studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Holmgren, Kristina M. & Berntsson, Thore S. & Andersson, Eva & Rydberg, Tomas, 2015. "The influence of biomass supply chains and by-products on the greenhouse gas emissions from gasification-based bio-SNG production systems," Energy, Elsevier, vol. 90(P1), pages 148-162.
    7. Blanco, Herib & Codina, Victor & Laurent, Alexis & Nijs, Wouter & Maréchal, François & Faaij, André, 2020. "Life cycle assessment integration into energy system models: An application for Power-to-Methane in the EU," Applied Energy, Elsevier, vol. 259(C).
    8. Máté Zavarkó & Attila R. Imre & Gábor Pörzse & Zoltán Csedő, 2021. "Past, Present and Near Future: An Overview of Closed, Running and Planned Biomethanation Facilities in Europe," Energies, MDPI, vol. 14(18), pages 1-27, September.
    9. Song, Guohui & Xiao, Jun & Yan, Chao & Gu, Haiming & Zhao, Hao, 2022. "Quality of gaseous biofuels: Statistical assessment and guidance on production technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    10. Guilera, Jordi & Andreu, Teresa & Basset, Núria & Boeltken, Tim & Timm, Friedemann & Mallol, Ignasi & Morante, Joan Ramon, 2020. "Synthetic natural gas production from biogas in a waste water treatment plant," Renewable Energy, Elsevier, vol. 146(C), pages 1301-1308.
    11. McDonagh, Shane & Ahmed, Shorif & Desmond, Cian & Murphy, Jerry D, 2020. "Hydrogen from offshore wind: Investor perspective on the profitability of a hybrid system including for curtailment," Applied Energy, Elsevier, vol. 265(C).
    12. Raheli, Enrica & Wu, Qiuwei & Zhang, Menglin & Wen, Changyun, 2021. "Optimal coordinated operation of integrated natural gas and electric power systems: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    13. Bongartz, Dominik & Doré, Larissa & Eichler, Katharina & Grube, Thomas & Heuser, Benedikt & Hombach, Laura E. & Robinius, Martin & Pischinger, Stefan & Stolten, Detlef & Walther, Grit & Mitsos, Alexan, 2018. "Comparison of light-duty transportation fuels produced from renewable hydrogen and green carbon dioxide," Applied Energy, Elsevier, vol. 231(C), pages 757-767.
    14. Eveloy, Valerie, 2019. "Hybridization of solid oxide electrolysis-based power-to-methane with oxyfuel combustion and carbon dioxide utilization for energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 550-571.
    15. Patrizio, P. & Leduc, S. & Chinese, D. & Kraxner, F., 2017. "Internalizing the external costs of biogas supply chains in the Italian energy sector," Energy, Elsevier, vol. 125(C), pages 85-96.
    16. Corey Duncan & Robin Roche & Samir Jemei & Marie-Cécile Péra, 2022. "Techno-economical modelling of a power-to-gas system for plant configuration evaluation in a local context," Post-Print hal-03692975, HAL.
    17. Inkeri, Eero & Tynjälä, Tero & Karjunen, Hannu, 2021. "Significance of methanation reactor dynamics on the annual efficiency of power-to-gas -system," Renewable Energy, Elsevier, vol. 163(C), pages 1113-1126.
    18. Hermesmann, M. & Grübel, K. & Scherotzki, L. & Müller, T.E., 2021. "Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    19. Quarton, Christopher J. & Samsatli, Sheila, 2020. "The value of hydrogen and carbon capture, storage and utilisation in decarbonising energy: Insights from integrated value chain optimisation," Applied Energy, Elsevier, vol. 257(C).
    20. Strübing, Dietmar & Moeller, Andreas B. & Mößnang, Bettina & Lebuhn, Michael & Drewes, Jörg E. & Koch, Konrad, 2018. "Anaerobic thermophilic trickle bed reactor as a promising technology for flexible and demand-oriented H2/CO2 biomethanation," Applied Energy, Elsevier, vol. 232(C), pages 543-554.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:146:y:2021:i:c:s1364032121004366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.