IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v41y2012i1p462-472.html
   My bibliography  Save this article

Optimal localisation of biofuel production on a European scale

Author

Listed:
  • Wetterlund, Elisabeth
  • Leduc, Sylvain
  • Dotzauer, Erik
  • Kindermann, Georg

Abstract

This paper presents the development and use of an optimisation model suitable for analysis of biofuel production scenarios in the EU, with the aim of examining second generation biofuel production. Two policy instruments are considered – targeted biofuel support and a CO2 cost. The results show that over 3% of the total transport fuel demand can be met by second generation biofuels at a cost of approximately 65-73 EUR/MWh. With current energy prices, this demands biofuel support comparable to existing tax exemptions (around 30 EUR/MWh), or a CO2 cost of around 60 EUR/tCO2. Parameters having large effect on biofuel production include feedstock availability, fossil fuel price and capital costs. It is concluded that in order to avoid suboptimal energy systems, heat and electricity applications should also be included when evaluating optimal bioenergy use. It is also concluded that while forceful policies promoting biofuels may lead to a high biofuel share at reasonable costs, this is not a certain path towards maximised CO2 emission mitigation. Policies aiming to promote the use of bioenergy thus need to be carefully designed in order to avoid conflicts between different parts of the EU targets for renewable energy and CO2 emission mitigation.

Suggested Citation

  • Wetterlund, Elisabeth & Leduc, Sylvain & Dotzauer, Erik & Kindermann, Georg, 2012. "Optimal localisation of biofuel production on a European scale," Energy, Elsevier, vol. 41(1), pages 462-472.
  • Handle: RePEc:eee:energy:v:41:y:2012:i:1:p:462-472
    DOI: 10.1016/j.energy.2012.02.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421200165X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.02.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tol, Richard S. J., 2005. "The marginal damage costs of carbon dioxide emissions: an assessment of the uncertainties," Energy Policy, Elsevier, vol. 33(16), pages 2064-2074, November.
    2. Fahlén, E. & Ahlgren, E.O., 2009. "Assessment of integration of different biomass gasification alternatives in a district-heating system," Energy, Elsevier, vol. 34(12), pages 2184-2195.
    3. Leduc, Sylvain & Natarajan, Karthikeyan & Dotzauer, Erik & McCallum, Ian & Obersteiner, Michael, 2009. "Optimizing biodiesel production in India," Applied Energy, Elsevier, vol. 86(Supplemen), pages 125-131, November.
    4. Leduc, S. & Starfelt, F. & Dotzauer, E. & Kindermann, G. & McCallum, I. & Obersteiner, M. & Lundgren, J., 2010. "Optimal location of lignocellulosic ethanol refineries with polygeneration in Sweden," Energy, Elsevier, vol. 35(6), pages 2709-2716.
    5. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    6. Egeskog, Andrea & Hansson, Julia & Berndes, Göran & Werner, Sven, 2009. "Co-generation of biofuels for transportation and heat for district heating systems--an assessment of the national possibilities in the EU," Energy Policy, Elsevier, vol. 37(12), pages 5260-5272, December.
    7. Axelsson, E. & Harvey, S. & Berntsson, T., 2009. "A tool for creating energy market scenarios for evaluation of investments in energy intensive industry," Energy, Elsevier, vol. 34(12), pages 2069-2074.
    8. Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Kindermann, Georg & Schmid, Erwin, 2010. "Cost-effective CO2 emission reduction through heat, power and biofuel production from woody biomass: A spatially explicit comparison of conversion technologies," Applied Energy, Elsevier, vol. 87(7), pages 2128-2141, July.
    9. Knutsson, David & Sahlin, Jenny & Werner, Sven & Ekvall, Tomas & Ahlgren, Erik O., 2006. "HEATSPOT—a simulation tool for national district heating analyses," Energy, Elsevier, vol. 31(2), pages 278-293.
    10. Wiesenthal, Tobias & Leduc, Guillaume & Christidis, Panayotis & Schade, Burkhard & Pelkmans, Luc & Govaerts, Leen & Georgopoulos, Panagiotis, 2009. "Biofuel support policies in Europe: Lessons learnt for the long way ahead," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 789-800, May.
    11. Börjesson, Martin & Ahlgren, Erik O., 2010. "Biomass gasification in cost-optimized district heating systems--A regional modelling analysis," Energy Policy, Elsevier, vol. 38(1), pages 168-180, January.
    12. Börjesson, Pål & Gustavsson, Leif, 1996. "Regional production and utilization of biomass in Sweden," Energy, Elsevier, vol. 21(9), pages 747-764.
    13. Wetterlund, Elisabeth & Söderström, Mats, 2010. "Biomass gasification in district heating systems - The effect of economic energy policies," Applied Energy, Elsevier, vol. 87(9), pages 2914-2922, September.
    14. Faaij, Andre P.C., 2006. "Bio-energy in Europe: changing technology choices," Energy Policy, Elsevier, vol. 34(3), pages 322-342, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wetterlund, Elisabeth & Söderström, Mats, 2010. "Biomass gasification in district heating systems - The effect of economic energy policies," Applied Energy, Elsevier, vol. 87(9), pages 2914-2922, September.
    2. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    3. Gustavsson, Leif & Truong, Nguyen Le, 2011. "Coproduction of district heat and electricity or biomotor fuels," Energy, Elsevier, vol. 36(10), pages 6263-6277.
    4. Truong, Nguyen Le & Gustavsson, Leif, 2014. "Minimum-cost district heat production systems of different sizes under different environmental and social cost scenarios," Applied Energy, Elsevier, vol. 136(C), pages 881-893.
    5. Holmgren, Kristina M. & Berntsson, Thore S. & Andersson, Eva & Rydberg, Tomas, 2016. "Comparison of integration options for gasification-based biofuel production systems – Economic and greenhouse gas emission implications," Energy, Elsevier, vol. 111(C), pages 272-294.
    6. Forsell, Nicklas & Guerassimoff, Gilles & Athanassiadis, Dimitris & Thivolle-Casat, Alain & Lorne, Daphné & Millet, Guy & Assoumou, Edi, 2013. "Sub-national TIMES model for analyzing future regional use of biomass and biofuels in Sweden and France," Renewable Energy, Elsevier, vol. 60(C), pages 415-426.
    7. Wetterlund, Elisabeth & Pettersson, Karin & Harvey, Simon, 2011. "Systems analysis of integrating biomass gasification with pulp and paper production – Effects on economic performance, CO2 emissions and energy use," Energy, Elsevier, vol. 36(2), pages 932-941.
    8. Mesfun, Sennai & Sanchez, Daniel L. & Leduc, Sylvain & Wetterlund, Elisabeth & Lundgren, Joakim & Biberacher, Markus & Kraxner, Florian, 2017. "Power-to-gas and power-to-liquid for managing renewable electricity intermittency in the Alpine Region," Renewable Energy, Elsevier, vol. 107(C), pages 361-372.
    9. Holmgren, Kristina M. & Andersson, Eva & Berntsson, Thore & Rydberg, Tomas, 2014. "Gasification-based methanol production from biomass in industrial clusters: Characterisation of energy balances and greenhouse gas emissions," Energy, Elsevier, vol. 69(C), pages 622-637.
    10. Pettersson, Karin & Wetterlund, Elisabeth & Athanassiadis, Dimitris & Lundmark, Robert & Ehn, Christian & Lundgren, Joakim & Berglin, Niklas, 2015. "Integration of next-generation biofuel production in the Swedish forest industry – A geographically explicit approach," Applied Energy, Elsevier, vol. 154(C), pages 317-332.
    11. Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Schmid, Erwin, 2011. "Cost-effective policy instruments for greenhouse gas emission reduction and fossil fuel substitution through bioenergy production in Austria," Energy Policy, Elsevier, vol. 39(6), pages 3261-3280, June.
    12. Shabani, Nazanin & Akhtari, Shaghaygh & Sowlati, Taraneh, 2013. "Value chain optimization of forest biomass for bioenergy production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 299-311.
    13. Hagos, Dejene Assefa & Gebremedhin, Alemayehu & Bolkesjø, Torjus Folsland, 2017. "The prospects of bioenergy in the future energy system of Inland Norway," Energy, Elsevier, vol. 121(C), pages 78-91.
    14. Johansson, Maria T., 2013. "Bio-synthetic natural gas as fuel in steel industry reheating furnaces – A case study of economic performance and effects on global CO2 emissions," Energy, Elsevier, vol. 57(C), pages 699-708.
    15. Shabani, Nazanin & Sowlati, Taraneh, 2013. "A mixed integer non-linear programming model for tactical value chain optimization of a wood biomass power plant," Applied Energy, Elsevier, vol. 104(C), pages 353-361.
    16. Cansino, José M. & Pablo-Romero, María del P. & Román, Rocío & Yñiguez, Rocío, 2011. "Promoting renewable energy sources for heating and cooling in EU-27 countries," Energy Policy, Elsevier, vol. 39(6), pages 3803-3812, June.
    17. Cansino, J.M. & Pablo-Romero, M.del P & Román, R. & Yñiguez, R., 2012. "Promotion of biofuel consumption in the transport sector: An EU-27 perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6013-6021.
    18. Alison Burrell & Maria Blanco & Stephan Hubertus Gay & Martin Henseler & Aikaterini Kavallari & Robert M'barek & Ignacio Perez & Axel Tonini, 2010. "Impacts of the EU Biofuel Target on Agricultural Markets and Land Use - A Comparative Modelling Assessment," JRC Research Reports JRC58484, Joint Research Centre.
    19. María Blanco & Marcel Adenäuer & Shailesh Shrestha & Arno Becker, 2012. "Methodology to assess EU Biofuel Policies: The CAPRI Approach," JRC Research Reports JRC80037, Joint Research Centre.
    20. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:41:y:2012:i:1:p:462-472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.