IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v34y2009i12p2184-2195.html
   My bibliography  Save this article

Assessment of integration of different biomass gasification alternatives in a district-heating system

Author

Listed:
  • Fahlén, E.
  • Ahlgren, E.O.

Abstract

With increasingly stringent CO2 emission reduction targets, incentives for efficient use of limited biomass resources increase. Technologies for gasification of biomass may then play a key role given their potential for high electrical efficiency and multiple outputs; not only electricity but also bio transport fuels and district heat. The aim of this study is to assess the economic consequences and the potential for CO2 reduction of integration of a biomass gasification plant into a district-heating (DH) system. The study focuses on co-location with an existing natural gas combined cycle heat and power plant in the municipal DH system of Göteborg, Sweden. The analysis is carried out using a systems modelling approach. The so-called MARTES model is used. MARTES is a simulating, DH systems supply model with a detailed time slice division. The economic robustness of different solutions is investigated by using different sets of parameters for electricity price, fuel prices and policy tools. In this study, it is assumed that not only tradable green certificates for electricity but also tradable green certificates for transport fuels exist. The economic results show strong dependence on the technical solutions and scenario assumptions but in most cases a stand-alone SNG-polygeneration plant with district-heat delivery is the cost-optimal solution. Its profitability is strongly dependent on policy tools and the price relation between biomass and fossil fuels. Finally, the results show that operation of the biomass gasification plants reduces the (DH) system's net emissions of CO2.

Suggested Citation

  • Fahlén, E. & Ahlgren, E.O., 2009. "Assessment of integration of different biomass gasification alternatives in a district-heating system," Energy, Elsevier, vol. 34(12), pages 2184-2195.
  • Handle: RePEc:eee:energy:v:34:y:2009:i:12:p:2184-2195
    DOI: 10.1016/j.energy.2008.10.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544208002843
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2008.10.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andersson, E. & Harvey, S., 2007. "Comparison of pulp-mill-integrated hydrogen production from gasified black liquor with stand-alone production from gasified biomass," Energy, Elsevier, vol. 32(4), pages 399-405.
    2. Sjödin, Jörgen & Henning, Dag, 2004. "Calculating the marginal costs of a district-heating utility," Applied Energy, Elsevier, vol. 78(1), pages 1-18, May.
    3. Marbe, Asa & Harvey, Simon, 2006. "Opportunities for integration of biofuel gasifiers in natural-gas combined heat-and-power plants in district-heating systems," Applied Energy, Elsevier, vol. 83(7), pages 723-748, July.
    4. Knutsson, David & Sahlin, Jenny & Werner, Sven & Ekvall, Tomas & Ahlgren, Erik O., 2006. "HEATSPOT—a simulation tool for national district heating analyses," Energy, Elsevier, vol. 31(2), pages 278-293.
    5. Holmgren, Kristina, 2006. "Role of a district-heating network as a user of waste-heat supply from various sources - the case of Göteborg," Applied Energy, Elsevier, vol. 83(12), pages 1351-1367, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moser, Simon & Puschnigg, Stefan & Rodin, Valerie, 2020. "Designing the Heat Merit Order to determine the value of industrial waste heat for district heating systems," Energy, Elsevier, vol. 200(C).
    2. Amiri, Shahnaz & Trygg, Louise & Moshfegh, Bahram, 2009. "Assessment of the natural gas potential for heat and power generation in the County of Östergötland in Sweden," Energy Policy, Elsevier, vol. 37(2), pages 496-506, February.
    3. Sandvall, Akram Fakhri & Ahlgren, Erik O. & Ekvall, Tomas, 2016. "System profitability of excess heat utilisation – A case-based modelling analysis," Energy, Elsevier, vol. 97(C), pages 424-434.
    4. András Mezősi & Enikő Kácsor & à kos Beöthy & à gnes Törőcsik & László Szabó, 2017. "Modelling support policies and renewable energy sources deployment in the Hungarian district heating sector," Energy & Environment, , vol. 28(1-2), pages 70-87, March.
    5. Holmgren, Kristina & Amiri, Shahnaz, 2007. "Internalising external costs of electricity and heat production in a municipal energy system," Energy Policy, Elsevier, vol. 35(10), pages 5242-5253, October.
    6. Morandin, Matteo & Hackl, Roman & Harvey, Simon, 2014. "Economic feasibility of district heating delivery from industrial excess heat: A case study of a Swedish petrochemical cluster," Energy, Elsevier, vol. 65(C), pages 209-220.
    7. Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
    8. Sandvall, Akram Fakhri & Börjesson, Martin & Ekvall, Tomas & Ahlgren, Erik O., 2015. "Modelling environmental and energy system impacts of large-scale excess heat utilisation – A regional case study," Energy, Elsevier, vol. 79(C), pages 68-79.
    9. Wetterlund, Elisabeth & Söderström, Mats, 2010. "Biomass gasification in district heating systems - The effect of economic energy policies," Applied Energy, Elsevier, vol. 87(9), pages 2914-2922, September.
    10. Ola Eriksson & Göran Finnveden, 2017. "Energy Recovery from Waste Incineration—The Importance of Technology Data and System Boundaries on CO 2 Emissions," Energies, MDPI, vol. 10(4), pages 1-18, April.
    11. Amiri, Shahnaz & Weinberger, Gottfried, 2018. "Increased cogeneration of renewable electricity through energy cooperation in a Swedish district heating system - A case study," Renewable Energy, Elsevier, vol. 116(PA), pages 866-877.
    12. Li, Haoran & Hou, Juan & Hong, Tianzhen & Ding, Yuemin & Nord, Natasa, 2021. "Energy, economic, and environmental analysis of integration of thermal energy storage into district heating systems using waste heat from data centres," Energy, Elsevier, vol. 219(C).
    13. Weinberger, Gottfried & Amiri, Shahnaz & Moshfegh, Bahram, 2017. "On the benefit of integration of a district heating system with industrial excess heat: An economic and environmental analysis," Applied Energy, Elsevier, vol. 191(C), pages 454-468.
    14. Mezősi, András & Beöthy, Ákos & Kácsor, Enikő & Törőcsik, Ágnes, 2016. "A magyarországi távhő-szabályozás modellezése. A megújuló energiára alapozott hőtermelés [Modelling policy options in the district heating sector, with a focus on renewable consumption]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(11), pages 1149-1176.
    15. Werner, Sven, 2017. "District heating and cooling in Sweden," Energy, Elsevier, vol. 126(C), pages 419-429.
    16. Fang, Tingting & Lahdelma, Risto, 2015. "Genetic optimization of multi-plant heat production in district heating networks," Applied Energy, Elsevier, vol. 159(C), pages 610-619.
    17. Trygg, Louise & Gebremedhin, Alemayehu & Karlsson, Björn G., 2006. "Resource-effective systems achieved through changes in energy supply and industrial use: The Volvo-Skövde case," Applied Energy, Elsevier, vol. 83(8), pages 801-818, August.
    18. Bonev, Petyo & Glachant, Matthieu & Söderberg, Magnus, 2022. "Implicit yardstick competition between heating monopolies in urban areas: Theory and evidence from Sweden," Energy Economics, Elsevier, vol. 109(C).
    19. Pieper, Henrik & Ommen, Torben & Elmegaard, Brian & Brix Markussen, Wiebke, 2019. "Assessment of a combination of three heat sources for heat pumps to supply district heating," Energy, Elsevier, vol. 176(C), pages 156-170.
    20. Guelpa, Elisa & Verda, Vittorio, 2019. "Compact physical model for simulation of thermal networks," Energy, Elsevier, vol. 175(C), pages 998-1008.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:34:y:2009:i:12:p:2184-2195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.