IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v31y2006i2p278-293.html
   My bibliography  Save this article

HEATSPOT—a simulation tool for national district heating analyses

Author

Listed:
  • Knutsson, David
  • Sahlin, Jenny
  • Werner, Sven
  • Ekvall, Tomas
  • Ahlgren, Erik O.

Abstract

A district heating (DH) system usually covers a local heat market only. Each system is characterised by a unique size, load profile and set of heat supply technologies. This diversity makes it difficult to analyse changes in the DH sector of a country as a whole. In national energy systems modelling and in life cycle assessment (LCA), the DH systems are typically, for practical reasons, aggregated to one national system, which is then subjected to changes. In order to investigate if this aggregated systems level indeed is sufficient for policy analysis purposes, two commonly used aggregation methods are validated against a third, newly developed model, here denoted the HEATSPOT model, covering 99% of the Swedish DH production. The approach used in this model is that all DH systems are described system by system and rational responses of the systems to changes in e.g. fuel prices or policy measures are calculated locally for the respective systems before the results are aggregated to a national level. The validation is carried out using results from a study on expansion of waste-fuel based DH production in Sweden in terms of changes in fuel supply and CO2-emissions. The work clearly shows that the resulting changes in fuel supply deviate considerably with choice of method. Regarding for example the change in biomass supply, the deviations are between −23 and +9% compared to the HEATSPOT results dependent on aggregation method used. The deviations in resulting fuel supply between the methods will, in turn, also lead to considerable deviations in CO2-emissions from the DH sector.

Suggested Citation

  • Knutsson, David & Sahlin, Jenny & Werner, Sven & Ekvall, Tomas & Ahlgren, Erik O., 2006. "HEATSPOT—a simulation tool for national district heating analyses," Energy, Elsevier, vol. 31(2), pages 278-293.
  • Handle: RePEc:eee:energy:v:31:y:2006:i:2:p:278-293
    DOI: 10.1016/j.energy.2005.02.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544205000381
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2005.02.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Henning, Dag, 1997. "MODEST—An energy-system optimisation model applicable to local utilities and countries," Energy, Elsevier, vol. 22(12), pages 1135-1150.
    2. Anna Björklund & Charlotte Bjuggren & Magnus Dalemo & Ulf Sonesson, 1999. "Planning Biodegradable Waste Management in Stockholm," Journal of Industrial Ecology, Yale University, vol. 3(4), pages 43-58, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Venter, Philip van Zyl & Terblanche, Stephanus Esias & van Eldik, Martin, 2018. "Turbine investment optimisation for energy recovery plants by utilising historic steam flow profiles," Energy, Elsevier, vol. 155(C), pages 668-677.
    2. Pieper, Henrik & Ommen, Torben & Elmegaard, Brian & Brix Markussen, Wiebke, 2019. "Assessment of a combination of three heat sources for heat pumps to supply district heating," Energy, Elsevier, vol. 176(C), pages 156-170.
    3. Eriksson, Marcus & Vamling, Lennart, 2007. "Future use of heat pumps in Swedish district heating systems: Short- and long-term impact of policy instruments and planned investments," Applied Energy, Elsevier, vol. 84(12), pages 1240-1257, December.
    4. Avinash Vijay & Adam Hawkes, 2017. "The Techno-Economics of Small-Scale Residential Heating in Low Carbon Futures," Energies, MDPI, vol. 10(11), pages 1-23, November.
    5. Serra, Luis M. & Lozano, Miguel-Angel & Ramos, Jose & Ensinas, Adriano V. & Nebra, Silvia A., 2009. "Polygeneration and efficient use of natural resources," Energy, Elsevier, vol. 34(5), pages 575-586.
    6. Sacha Hodencq & Mathieu Brugeron & Jaume Fitó & Lou Morriet & Benoit Delinchant & Frédéric Wurtz, 2021. "OMEGAlpes, an Open-Source Optimisation Model Generation Tool to Support Energy Stakeholders at District Scale," Energies, MDPI, vol. 14(18), pages 1-30, September.
    7. Lozano, Miguel A. & Ramos, Jose C. & Serra, Luis M., 2010. "Cost optimization of the design of CHCP (combined heat, cooling and power) systems under legal constraints," Energy, Elsevier, vol. 35(2), pages 794-805.
    8. Camille Pajot & Nils Artiges & Benoit Delinchant & Simon Rouchier & Frédéric Wurtz & Yves Maréchal, 2019. "An Approach to Study District Thermal Flexibility Using Generative Modeling from Existing Data," Energies, MDPI, vol. 12(19), pages 1-22, September.
    9. Scheller, Fabian & Bruckner, Thomas, 2019. "Energy system optimization at the municipal level: An analysis of modeling approaches and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 444-461.
    10. Yang, Yun & Zhang, Shijie & Xiao, Yunhan, 2015. "An MILP (mixed integer linear programming) model for optimal design of district-scale distributed energy resource systems," Energy, Elsevier, vol. 90(P2), pages 1901-1915.
    11. Stefan Blomqvist & Lina La Fleur & Shahnaz Amiri & Patrik Rohdin & Louise Ödlund (former Trygg), 2019. "The Impact on System Performance When Renovating a Multifamily Building Stock in a District Heated Region," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    12. Li, G.C. & Huang, G.H. & Lin, Q.G. & Zhang, X.D. & Tan, Q. & Chen, Y.M., 2011. "Development of a GHG-mitigation oriented inexact dynamic model for regional energy system management," Energy, Elsevier, vol. 36(5), pages 3388-3398.
    13. Jaehnert, Stefan & Wolfgang, Ove & Farahmand, Hossein & Völler, Steve & Huertas-Hernando, Daniel, 2013. "Transmission expansion planning in Northern Europe in 2030—Methodology and analyses," Energy Policy, Elsevier, vol. 61(C), pages 125-139.
    14. András Mezősi & Enikő Kácsor & à kos Beöthy & à gnes Törőcsik & László Szabó, 2017. "Modelling support policies and renewable energy sources deployment in the Hungarian district heating sector," Energy & Environment, , vol. 28(1-2), pages 70-87, March.
    15. Maria Ljunggren Söderman & Ola Eriksson & Anna Björklund & Göran Östblom & Tomas Ekvall & Göran Finnveden & Yevgeniya Arushanyan & Jan-Olov Sundqvist, 2016. "Integrated Economic and Environmental Assessment of Waste Policy Instruments," Sustainability, MDPI, vol. 8(5), pages 1-21, April.
    16. Emilio Cano & Javier Moguerza & Tatiana Ermolieva & Yuri Ermoliev, 2014. "Energy efficiency and risk management in public buildings: strategic model for robust planning," Computational Management Science, Springer, vol. 11(1), pages 25-44, January.
    17. Gebremedhin, Alemayehu, 2014. "Optimal utilisation of heat demand in district heating system—A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 230-236.
    18. Henning, Dag & Amiri, Shahnaz & Holmgren, Kristina, 2006. "Modelling and optimisation of electricity, steam and district heating production for a local Swedish utility," European Journal of Operational Research, Elsevier, vol. 175(2), pages 1224-1247, December.
    19. Lidberg, T. & Olofsson, T. & Trygg, L., 2016. "System impact of energy efficient building refurbishment within a district heated region," Energy, Elsevier, vol. 106(C), pages 45-53.
    20. Yang, Yun & Zhang, Shijie & Xiao, Yunhan, 2015. "Optimal design of distributed energy resource systems coupled with energy distribution networks," Energy, Elsevier, vol. 85(C), pages 433-448.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:31:y:2006:i:2:p:278-293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.