IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v90y2015ip1p148-162.html
   My bibliography  Save this article

The influence of biomass supply chains and by-products on the greenhouse gas emissions from gasification-based bio-SNG production systems

Author

Listed:
  • Holmgren, Kristina M.
  • Berntsson, Thore S.
  • Andersson, Eva
  • Rydberg, Tomas

Abstract

This study analyses the impact on the GHG (greenhouse gas) emissions of the raw material supply chain, the utilisation of excess heat and CO2 storage for a bio-SNG (biomass gasification-based synthetic natural gas) system by applying a consequential life cycle assessment approach. The impact of the biomass supply chain is analysed by assessing GHG emissions of locally produced woodchips and pellets with regional or transatlantic origin. Results show that the supply area for the gasification plant can be substantially increased with only modest increases in overall GHG emissions (3–5%) by using regionally produced pellets. The transatlantic pellet chains contribute to significantly higher GHG emissions.

Suggested Citation

  • Holmgren, Kristina M. & Berntsson, Thore S. & Andersson, Eva & Rydberg, Tomas, 2015. "The influence of biomass supply chains and by-products on the greenhouse gas emissions from gasification-based bio-SNG production systems," Energy, Elsevier, vol. 90(P1), pages 148-162.
  • Handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:148-162
    DOI: 10.1016/j.energy.2015.03.098
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215004077
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.03.098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wetterlund, Elisabeth & Leduc, Sylvain & Dotzauer, Erik & Kindermann, Georg, 2012. "Optimal localisation of biofuel production on a European scale," Energy, Elsevier, vol. 41(1), pages 462-472.
    2. Holmgren, Kristina M. & Berntsson, Thore & Andersson, Eva & Rydberg, Tomas, 2012. "System aspects of biomass gasification with methanol synthesis – Process concepts and energy analysis," Energy, Elsevier, vol. 45(1), pages 817-828.
    3. Roddy, Dermot J., 2012. "Development of a CO2 network for industrial emissions," Applied Energy, Elsevier, vol. 91(1), pages 459-465.
    4. Shabani, Nazanin & Akhtari, Shaghaygh & Sowlati, Taraneh, 2013. "Value chain optimization of forest biomass for bioenergy production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 299-311.
    5. Fahlén, E. & Ahlgren, E.O., 2009. "Assessment of integration of different biomass gasification alternatives in a district-heating system," Energy, Elsevier, vol. 34(12), pages 2184-2195.
    6. Natarajan, Karthikeyan & Leduc, Sylvain & Pelkonen, Paavo & Tomppo, Erkki & Dotzauer, Erik, 2014. "Optimal locations for second generation Fischer Tropsch biodiesel production in Finland," Renewable Energy, Elsevier, vol. 62(C), pages 319-330.
    7. Martelli, Emanuele & Nord, Lars O. & Bolland, Olav, 2012. "Design criteria and optimization of heat recovery steam cycles for integrated reforming combined cycles with CO2 capture," Applied Energy, Elsevier, vol. 92(C), pages 255-268.
    8. Steubing, Bernhard & Ballmer, Isabel & Gassner, Martin & Gerber, Léda & Pampuri, Luca & Bischof, Sandro & Thees, Oliver & Zah, Rainer, 2014. "Identifying environmentally and economically optimal bioenergy plant sizes and locations: A spatial model of wood-based SNG value chains," Renewable Energy, Elsevier, vol. 61(C), pages 57-68.
    9. Holmgren, Kristina M. & Andersson, Eva & Berntsson, Thore & Rydberg, Tomas, 2014. "Gasification-based methanol production from biomass in industrial clusters: Characterisation of energy balances and greenhouse gas emissions," Energy, Elsevier, vol. 69(C), pages 622-637.
    10. Peduzzi, Emanuela & Tock, Laurence & Boissonnet, Guillaume & Maréchal, François, 2013. "Thermo-economic evaluation and optimization of the thermo-chemical conversion of biomass into methanol," Energy, Elsevier, vol. 58(C), pages 9-16.
    11. Kudakasseril Kurian, Jiby & Raveendran Nair, Gopu & Hussain, Abid & Vijaya Raghavan, G.S., 2013. "Feedstocks, logistics and pre-treatment processes for sustainable lignocellulosic biorefineries: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 205-219.
    12. Clausen, Lasse R., 2014. "Integrated torrefaction vs. external torrefaction – A thermodynamic analysis for the case of a thermochemical biorefinery," Energy, Elsevier, vol. 77(C), pages 597-607.
    13. Leduc, S. & Lundgren, J. & Franklin, O. & Dotzauer, E., 2010. "Location of a biomass based methanol production plant: A dynamic problem in northern Sweden," Applied Energy, Elsevier, vol. 87(1), pages 68-75, January.
    14. Uslu, Ayla & Faaij, André P.C. & Bergman, P.C.A., 2008. "Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation," Energy, Elsevier, vol. 33(8), pages 1206-1223.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kolb, Sebastian & Plankenbühler, Thomas & Hofmann, Katharina & Bergerson, Joule & Karl, Jürgen, 2021. "Life cycle greenhouse gas emissions of renewable gas technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    2. Naqvi, M. & Dahlquist, E. & Yan, J. & Naqvi, S.R. & Nizami, A.S. & Salman, C.A. & Danish, M. & Farooq, U. & Rehan, M. & Khan, Z. & Qureshi, A.S., 2018. "Polygeneration system integrated with small non-wood pulp mills for substitute natural gas production," Applied Energy, Elsevier, vol. 224(C), pages 636-646.
    3. Elsido, Cristina & Martelli, Emanuele & Kreutz, Thomas, 2019. "Heat integration and heat recovery steam cycle optimization for a low-carbon lignite/biomass-to-jet fuel demonstration project," Applied Energy, Elsevier, vol. 239(C), pages 1322-1342.
    4. Singlitico, Alessandro & Goggins, Jamie & Monaghan, Rory F.D., 2019. "The role of life cycle assessment in the sustainable transition to a decarbonised gas network through green gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 16-28.
    5. Ye, Fei & Li, Yina & Lin, Qiang & Zhan, Yuanzhu, 2017. "Modeling of China's cassava-based bioethanol supply chain operation and coordination," Energy, Elsevier, vol. 120(C), pages 217-228.
    6. Holmgren, Kristina M. & Berntsson, Thore S. & Andersson, Eva & Rydberg, Tomas, 2016. "Comparison of integration options for gasification-based biofuel production systems – Economic and greenhouse gas emission implications," Energy, Elsevier, vol. 111(C), pages 272-294.
    7. Holmgren, Kristina M. & Berntsson, Thore & Lönnqvist, Tomas, 2018. "Profitability and greenhouse gas emissions of gasification-based biofuel production - Analysis of sector specific policy instruments and comparison to conventional biomass conversion technologies," Energy, Elsevier, vol. 165(PA), pages 997-1007.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Holmgren, Kristina M. & Berntsson, Thore S. & Andersson, Eva & Rydberg, Tomas, 2016. "Comparison of integration options for gasification-based biofuel production systems – Economic and greenhouse gas emission implications," Energy, Elsevier, vol. 111(C), pages 272-294.
    2. Kolb, Sebastian & Plankenbühler, Thomas & Hofmann, Katharina & Bergerson, Joule & Karl, Jürgen, 2021. "Life cycle greenhouse gas emissions of renewable gas technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    3. Holmgren, Kristina M. & Andersson, Eva & Berntsson, Thore & Rydberg, Tomas, 2014. "Gasification-based methanol production from biomass in industrial clusters: Characterisation of energy balances and greenhouse gas emissions," Energy, Elsevier, vol. 69(C), pages 622-637.
    4. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    5. Svanberg, Martin & Ellis, Joanne & Lundgren, Joakim & Landälv, Ingvar, 2018. "Renewable methanol as a fuel for the shipping industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1217-1228.
    6. de Jong, Sierk & Hoefnagels, Ric & Wetterlund, Elisabeth & Pettersson, Karin & Faaij, André & Junginger, Martin, 2017. "Cost optimization of biofuel production – The impact of scale, integration, transport and supply chain configurations," Applied Energy, Elsevier, vol. 195(C), pages 1055-1070.
    7. Shabani, Nazanin & Sowlati, Taraneh & Ouhimmou, Mustapha & Rönnqvist, Mikael, 2014. "Tactical supply chain planning for a forest biomass power plant under supply uncertainty," Energy, Elsevier, vol. 78(C), pages 346-355.
    8. Butera, Giacomo & Fendt, Sebastian & Jensen, Søren H. & Ahrenfeldt, Jesper & Clausen, Lasse R., 2020. "Flexible methanol production units coupling solid oxide cells and thermochemical biomass conversion via different gasification technologies," Energy, Elsevier, vol. 208(C).
    9. Mafakheri, Fereshteh & Nasiri, Fuzhan, 2014. "Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions," Energy Policy, Elsevier, vol. 67(C), pages 116-126.
    10. Wafiq, A. & Hanafy, M., 2015. "Feasibility assessment of diesel fuel production in Egypt using coal and biomass: Integrated novel methodology," Energy, Elsevier, vol. 85(C), pages 522-533.
    11. Butera, Giacomo & Gadsbøll, Rasmus Østergaard & Ravenni, Giulia & Ahrenfeldt, Jesper & Henriksen, Ulrik Birk & Clausen, Lasse Røngaard, 2020. "Thermodynamic analysis of methanol synthesis combining straw gasification and electrolysis via the low temperature circulating fluid bed gasifier and a char bed gas cleaning unit," Energy, Elsevier, vol. 199(C).
    12. Durusut, Emrah & Tahir, Foaad & Foster, Sam & Dineen, Denis & Clancy, Matthew, 2018. "BioHEAT: A policy decision support tool in Ireland’s bioenergy and heat sectors," Applied Energy, Elsevier, vol. 213(C), pages 306-321.
    13. Patrizio, P. & Leduc, S. & Chinese, D. & Kraxner, F., 2017. "Internalizing the external costs of biogas supply chains in the Italian energy sector," Energy, Elsevier, vol. 125(C), pages 85-96.
    14. Zhang, Hanfei & Wang, Ligang & Pérez-Fortes, Mar & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic optimization of biomass-to-methanol with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 258(C).
    15. Manju Dhakad Tanwar & Felipe Andrade Torres & Ali Mubarak Alqahtani & Pankaj Kumar Tanwar & Yashas Bhand & Omid Doustdar, 2023. "Promising Bioalcohols for Low-Emission Vehicles," Energies, MDPI, vol. 16(2), pages 1-22, January.
    16. Mirkouei, Amin & Haapala, Karl R. & Sessions, John & Murthy, Ganti S., 2017. "A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 15-35.
    17. Venturini, Giada & Pizarro-Alonso, Amalia & Münster, Marie, 2019. "How to maximise the value of residual biomass resources: The case of straw in Denmark," Applied Energy, Elsevier, vol. 250(C), pages 369-388.
    18. Truong, Nguyen Le & Gustavsson, Leif, 2013. "Integrated biomass-based production of district heat, electricity, motor fuels and pellets of different scales," Applied Energy, Elsevier, vol. 104(C), pages 623-632.
    19. Pettersson, Karin & Wetterlund, Elisabeth & Athanassiadis, Dimitris & Lundmark, Robert & Ehn, Christian & Lundgren, Joakim & Berglin, Niklas, 2015. "Integration of next-generation biofuel production in the Swedish forest industry – A geographically explicit approach," Applied Energy, Elsevier, vol. 154(C), pages 317-332.
    20. Hoefnagels, Ric & Resch, Gustav & Junginger, Martin & Faaij, André, 2014. "International and domestic uses of solid biofuels under different renewable energy support scenarios in the European Union," Applied Energy, Elsevier, vol. 131(C), pages 139-157.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:148-162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.