IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v199y2020ics0360544220305120.html
   My bibliography  Save this article

Thermodynamic analysis of methanol synthesis combining straw gasification and electrolysis via the low temperature circulating fluid bed gasifier and a char bed gas cleaning unit

Author

Listed:
  • Butera, Giacomo
  • Gadsbøll, Rasmus Østergaard
  • Ravenni, Giulia
  • Ahrenfeldt, Jesper
  • Henriksen, Ulrik Birk
  • Clausen, Lasse Røngaard

Abstract

The phase-out of fossil fuels in the heavy transportation sector will require energy-dense biofuels like methanol, and will likely require that a wide range of biomasses are utilized. In this framework, gasification of straw and subsequent upgrading to methanol represents a potentially advantageous conversion route. In this study, the established low-temperature circulating fluid bed (LTCFB) gasifier is coupled to a partial oxidation (POX) and char bed reactor, which enables a relatively robust and effective conversion of tars - making the product gas suitable for methanol synthesis. Five scenarios producing methanol via traditional air-separation units and electrolysis were thermodynamically modeled and analyzed in Aspen Plus. The analysis showed state-of-the-art biomass-to-methanol energy efficiencies up to 54–56% and overall carbon conversions above 57%. A parametric analysis on the POX temperature revealed the potential to increase efficiency and the carbon conversion up to 58% and 68%, respectively. The proposed systems outperform alternative systems framed on straw gasification, and exceed in terms of efficiency and overall carbon conversion other solutions based on wood-gasification.

Suggested Citation

  • Butera, Giacomo & Gadsbøll, Rasmus Østergaard & Ravenni, Giulia & Ahrenfeldt, Jesper & Henriksen, Ulrik Birk & Clausen, Lasse Røngaard, 2020. "Thermodynamic analysis of methanol synthesis combining straw gasification and electrolysis via the low temperature circulating fluid bed gasifier and a char bed gas cleaning unit," Energy, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:energy:v:199:y:2020:i:c:s0360544220305120
    DOI: 10.1016/j.energy.2020.117405
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220305120
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117405?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gadsbøll, Rasmus Østergaard & Sárossy, Zsuzsa & Jørgensen, Lars & Ahrenfeldt, Jesper & Henriksen, Ulrik Birk, 2018. "Oxygen-blown operation of the TwoStage Viking gasifier," Energy, Elsevier, vol. 158(C), pages 495-503.
    2. Holmgren, Kristina M. & Berntsson, Thore & Andersson, Eva & Rydberg, Tomas, 2012. "System aspects of biomass gasification with methanol synthesis – Process concepts and energy analysis," Energy, Elsevier, vol. 45(1), pages 817-828.
    3. Clausen, Lasse R., 2015. "Maximizing biofuel production in a thermochemical biorefinery by adding electrolytic hydrogen and by integrating torrefaction with entrained flow gasification," Energy, Elsevier, vol. 85(C), pages 94-104.
    4. Haro, Pedro & Trippe, Frederik & Stahl, Ralph & Henrich, Edmund, 2013. "Bio-syngas to gasoline and olefins via DME – A comprehensive techno-economic assessment," Applied Energy, Elsevier, vol. 108(C), pages 54-65.
    5. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    6. Holmgren, Kristina M. & Andersson, Eva & Berntsson, Thore & Rydberg, Tomas, 2014. "Gasification-based methanol production from biomass in industrial clusters: Characterisation of energy balances and greenhouse gas emissions," Energy, Elsevier, vol. 69(C), pages 622-637.
    7. Mathiesen, B.V. & Lund, H. & Nørgaard, P., 2008. "Integrated transport and renewable energy systems," Utilities Policy, Elsevier, vol. 16(2), pages 107-116, June.
    8. Sigurjonsson, Hafthor Ægir & Clausen, Lasse R., 2018. "Solution for the future smart energy system: A polygeneration plant based on reversible solid oxide cells and biomass gasification producing either electrofuel or power," Applied Energy, Elsevier, vol. 216(C), pages 323-337.
    9. Clausen, Lasse R., 2014. "Integrated torrefaction vs. external torrefaction – A thermodynamic analysis for the case of a thermochemical biorefinery," Energy, Elsevier, vol. 77(C), pages 597-607.
    10. Butera, Giacomo & Jensen, Søren Højgaard & Clausen, Lasse Røngaard, 2019. "A novel system for large-scale storage of electricity as synthetic natural gas using reversible pressurized solid oxide cells," Energy, Elsevier, vol. 166(C), pages 738-754.
    11. Gadsbøll, Rasmus Østergaard & Clausen, Lasse Røngaard & Thomsen, Tobias Pape & Ahrenfeldt, Jesper & Henriksen, Ulrik Birk, 2019. "Flexible TwoStage biomass gasifier designs for polygeneration operation," Energy, Elsevier, vol. 166(C), pages 939-950.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lund, Henrik & Skov, Iva Ridjan & Thellufsen, Jakob Zinck & Sorknæs, Peter & Korberg, Andrei David & Chang, Miguel & Mathiesen, Brian Vad & Kany, Mikkel Strunge, 2022. "The role of sustainable bioenergy in a fully decarbonised society," Renewable Energy, Elsevier, vol. 196(C), pages 195-203.
    2. Zheng Lian & Yixiao Wang & Xiyue Zhang & Abubakar Yusuf & Lord Famiyeh & David Murindababisha & Huan Jin & Yiyang Liu & Jun He & Yunshan Wang & Gang Yang & Yong Sun, 2021. "Hydrogen Production by Fluidized Bed Reactors: A Quantitative Perspective Using the Supervised Machine Learning Approach," J, MDPI, vol. 4(3), pages 1-22, July.
    3. Chengjiang Li & Tingwen Jia & Shiyuan Wang & Xiaolin Wang & Michael Negnevitsky & Honglei Wang & Yujie Hu & Weibin Xu & Na Zhou & Gang Zhao, 2023. "Methanol Vehicles in China: A Review from a Policy Perspective," Sustainability, MDPI, vol. 15(12), pages 1-22, June.
    4. Butera, Giacomo & Fendt, Sebastian & Jensen, Søren H. & Ahrenfeldt, Jesper & Clausen, Lasse R., 2020. "Flexible methanol production units coupling solid oxide cells and thermochemical biomass conversion via different gasification technologies," Energy, Elsevier, vol. 208(C).
    5. Li, Chengjiang & Jia, Tingwen & Wang, Honglei & Wang, Xiaolin & Negnevitsky, Michael & Hu, Yu-jie & Zhao, Gang & Wang, Liang, 2023. "Assessing the prospect of deploying green methanol vehicles in China from energy, environmental and economic perspectives," Energy, Elsevier, vol. 263(PE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Butera, Giacomo & Fendt, Sebastian & Jensen, Søren H. & Ahrenfeldt, Jesper & Clausen, Lasse R., 2020. "Flexible methanol production units coupling solid oxide cells and thermochemical biomass conversion via different gasification technologies," Energy, Elsevier, vol. 208(C).
    2. Holmgren, Kristina M. & Berntsson, Thore S. & Andersson, Eva & Rydberg, Tomas, 2015. "The influence of biomass supply chains and by-products on the greenhouse gas emissions from gasification-based bio-SNG production systems," Energy, Elsevier, vol. 90(P1), pages 148-162.
    3. Clausen, Lasse R. & Butera, Giacomo & Jensen, Søren Højgaard, 2019. "High efficiency SNG production from biomass and electricity by integrating gasification with pressurized solid oxide electrolysis cells," Energy, Elsevier, vol. 172(C), pages 1117-1131.
    4. Clausen, Lasse R. & Butera, Giacomo & Jensen, Søren Højgaard, 2019. "Integration of anaerobic digestion with thermal gasification and pressurized solid oxide electrolysis cells for high efficiency bio-SNG production," Energy, Elsevier, vol. 188(C).
    5. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    7. Gadsbøll, Rasmus Østergaard & Clausen, Lasse Røngaard & Thomsen, Tobias Pape & Ahrenfeldt, Jesper & Henriksen, Ulrik Birk, 2019. "Flexible TwoStage biomass gasifier designs for polygeneration operation," Energy, Elsevier, vol. 166(C), pages 939-950.
    8. Kolb, Sebastian & Plankenbühler, Thomas & Hofmann, Katharina & Bergerson, Joule & Karl, Jürgen, 2021. "Life cycle greenhouse gas emissions of renewable gas technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    9. Novosel, T. & Ćosić, B. & Pukšec, T. & Krajačić, G. & Duić, N. & Mathiesen, B.V. & Lund, H. & Mustafa, M., 2015. "Integration of renewables and reverse osmosis desalination – Case study for the Jordanian energy system with a high share of wind and photovoltaics," Energy, Elsevier, vol. 92(P3), pages 270-278.
    10. Holmgren, Kristina M. & Berntsson, Thore S. & Andersson, Eva & Rydberg, Tomas, 2016. "Comparison of integration options for gasification-based biofuel production systems – Economic and greenhouse gas emission implications," Energy, Elsevier, vol. 111(C), pages 272-294.
    11. Lythcke-Jørgensen, Christoffer & Clausen, Lasse Røngaard & Algren, Loui & Hansen, Anders Bavnhøj & Münster, Marie & Gadsbøll, Rasmus Østergaard & Haglind, Fredrik, 2017. "Optimization of a flexible multi-generation system based on wood chip gasification and methanol production," Applied Energy, Elsevier, vol. 192(C), pages 337-359.
    12. Trop, P. & Anicic, B. & Goricanec, D., 2014. "Production of methanol from a mixture of torrefied biomass and coal," Energy, Elsevier, vol. 77(C), pages 125-132.
    13. Bačeković, Ivan & Østergaard, Poul Alberg, 2018. "A smart energy system approach vs a non-integrated renewable energy system approach to designing a future energy system in Zagreb," Energy, Elsevier, vol. 155(C), pages 824-837.
    14. Sigurjonsson, Hafthor Ægir & Clausen, Lasse R., 2018. "Solution for the future smart energy system: A polygeneration plant based on reversible solid oxide cells and biomass gasification producing either electrofuel or power," Applied Energy, Elsevier, vol. 216(C), pages 323-337.
    15. Segurado, R. & Pereira, S. & Correia, D. & Costa, M., 2019. "Techno-economic analysis of a trigeneration system based on biomass gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 501-514.
    16. Connolly, D. & Mathiesen, B.V. & Ridjan, I., 2014. "A comparison between renewable transport fuels that can supplement or replace biofuels in a 100% renewable energy system," Energy, Elsevier, vol. 73(C), pages 110-125.
    17. Narvaez, A. & Chadwick, D. & Kershenbaum, L., 2019. "Performance of small-medium scale polygeneration systems for dimethyl ether and power production," Energy, Elsevier, vol. 188(C).
    18. Wafiq, A. & Hanafy, M., 2015. "Feasibility assessment of diesel fuel production in Egypt using coal and biomass: Integrated novel methodology," Energy, Elsevier, vol. 85(C), pages 522-533.
    19. Lund, Henrik & Østergaard, Poul Alberg & Connolly, David & Mathiesen, Brian Vad, 2017. "Smart energy and smart energy systems," Energy, Elsevier, vol. 137(C), pages 556-565.
    20. Kostevšek, Anja & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Papa, Gregor & Petek, Janez, 2016. "The concept of an ecosystem model to support the transformation to sustainable energy systems," Applied Energy, Elsevier, vol. 184(C), pages 1460-1469.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:199:y:2020:i:c:s0360544220305120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.