Advanced Search
MyIDEAS: Login to save this article or follow this journal

Location of a biomass based methanol production plant: A dynamic problem in northern Sweden

Contents:

Author Info

  • Leduc, S.
  • Lundgren, J.
  • Franklin, O.
  • Dotzauer, E.
Registered author(s):

    Abstract

    Concerning production and use of biofuels, mismatch between the locations of feedstock and the biofuel consumer may lead to high transportation costs and negative environmental impact. In order to minimize these consequences, it is important to locate the production plant at an appropriate location. In this paper, a case study of the county of Norrbotten in northern Sweden is presented with the purpose to illustrate how an optimization model could be used to assess a proper location for a biomass based methanol production plant. The production of lignocellulosic based methanol via gasification has been chosen, as methanol seems to be one promising alternative to replace fossil gasoline as an automotive fuel and Norrbotten has abundant resources of woody biomass. If methanol would be produced in a stand-alone production plant in the county, the cost for transportation of the feedstock as well as the produced methanol would have great impact on the final cost depending on where the methanol plant is located. Three different production plant sizes have been considered in the study, 100, 200 and 400Â MW (biomass fuel input), respectively. When assessing a proper location for this kind of plant, it is important to also consider the future motor fuel demand as well as to identify a heat sink for the residual heat. In this study, four different automotive fuel- and district heating demand scenarios have been created until the year 2025. The results show that methanol can be produced at a maximum cost of 0.48 [euro]/l without heat sales. By selling the residual heat as district heating, the methanol production cost per liter fuel may decrease by up to 10% when the plant is located close to an area with high annual heat demand.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6V1T-4W2M6TY-1/2/d3325f0aeae9f0a65fd53cac0522af12
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Applied Energy.

    Volume (Year): 87 (2010)
    Issue (Month): 1 (January)
    Pages: 68-75

    as in new window
    Handle: RePEc:eee:appene:v:87:y:2010:i:1:p:68-75

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
    Web: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic

    Related research

    Keywords: Plant location Methanol Forestry-based biomass Gasification Heat Mixed integer programming;

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Delzeit, Ruth & Britz, Wolfgang & Holm-Müller, Karin, 2011. "Modelling regional input markets with numerous processing plants: The case of green maize for biogas production in Germany," Discussion Papers 162892, University of Bonn, Institute for Food and Resource Economics.
    2. Walther, Grit & Schatka, Anne & Spengler, Thomas S., 2012. "Design of regional production networks for second generation synthetic bio-fuel – A case study in Northern Germany," European Journal of Operational Research, Elsevier, vol. 218(1), pages 280-292.
    3. Rahimpour, M.R. & Mazinani, S. & Vaferi, B. & Baktash, M.S., 2011. "Comparison of two different flow types on CO removal along a two-stage hydrogen permselective membrane reactor for methanol synthesis," Applied Energy, Elsevier, vol. 88(1), pages 41-51, January.
    4. Osmani, Atif & Zhang, Jun, 2014. "Economic and environmental optimization of a large scale sustainable dual feedstock lignocellulosic-based bioethanol supply chain in a stochastic environment," Applied Energy, Elsevier, vol. 114(C), pages 572-587.
    5. Mafakheri, Fereshteh & Nasiri, Fuzhan, 2014. "Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions," Energy Policy, Elsevier, vol. 67(C), pages 116-126.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:1:p:68-75. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.