IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v107y2019icp388-398.html
   My bibliography  Save this article

A compositional approach for modelling SDG7 indicators: Case study applied to electricity access

Author

Listed:
  • Marcillo-Delgado, J.C.
  • Ortego, M.I.
  • Pérez-Foguet, A.

Abstract

Monitoring energy indicators has acquired a renewed interest with the 2030 Agenda for Sustainable Development, and specifically with goal 7 (SDG7), which seeks to guarantee universal access to energy. The predominant criteria to monitor SDG7 are given in a set of individual indicators. Along this line, the UN indicators proposed in the 47th session of the UN Statistical commission are a practical starting point. A relevant characteristic of these indicators is that they can be expressed as proportions from a whole, i.e., they are compositions. Notably, directly implementing traditional multivariate models onto indicators that are proportions without an intermediate process can lead to spurious analysis. Here, we aim to assess the application of compositional data analysis(CoDa) to follow up on the temporal trend indicators of the energy sector in the context of SDG7, with a case study for the most affected areas addressing the problem of electricity access. Following CoDa methodology, we first use a log-ratio transformation to bring compositions to real space and then apply three multivariate methods: linear regression, generalized additive models and support vector machine. We also address other characteristic problems of the electricity access indicators, such as data quality, which was treated by considering models with interactions. In sum, CoDa facilitates a controlled management of the parts that make up population based indicators, suggesting that modelling evolution of compositions as individual components – even the standard splitting of country data into rural and urban “access to” indicator – should be avoided.

Suggested Citation

  • Marcillo-Delgado, J.C. & Ortego, M.I. & Pérez-Foguet, A., 2019. "A compositional approach for modelling SDG7 indicators: Case study applied to electricity access," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 388-398.
  • Handle: RePEc:eee:rensus:v:107:y:2019:i:c:p:388-398
    DOI: 10.1016/j.rser.2019.03.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119301674
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.03.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jianzhou & Zhu, Wenjin & Zhang, Wenyu & Sun, Donghuai, 2009. "A trend fixed on firstly and seasonal adjustment model combined with the [epsilon]-SVR for short-term forecasting of electricity demand," Energy Policy, Elsevier, vol. 37(11), pages 4901-4909, November.
    2. Giwa, Adewale & Alabi, Adetunji & Yusuf, Ahmed & Olukan, Tuza, 2017. "A comprehensive review on biomass and solar energy for sustainable energy generation in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 620-641.
    3. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    4. Perwez, Usama & Sohail, Ahmed & Hassan, Syed Fahad & Zia, Usman, 2015. "The long-term forecast of Pakistan's electricity supply and demand: An application of long range energy alternatives planning," Energy, Elsevier, vol. 93(P2), pages 2423-2435.
    5. Kavaklioglu, Kadir, 2011. "Modeling and prediction of Turkey's electricity consumption using Support Vector Regression," Applied Energy, Elsevier, vol. 88(1), pages 368-375, January.
    6. Ghimire, Laxman Prasad & Kim, Yeonbae, 2018. "An analysis on barriers to renewable energy development in the context of Nepal using AHP," Renewable Energy, Elsevier, vol. 129(PA), pages 446-456.
    7. Pachauri, Shonali & Spreng, Daniel, 2011. "Measuring and monitoring energy poverty," Energy Policy, Elsevier, vol. 39(12), pages 7497-7504.
    8. Magnani, Natalia & Vaona, Andrea, 2016. "Access to electricity and socio-economic characteristics: Panel data evidence at the country level," Energy, Elsevier, vol. 103(C), pages 447-455.
    9. Doll, Christopher N.H. & Pachauri, Shonali, 2010. "Estimating rural populations without access to electricity in developing countries through night-time light satellite imagery," Energy Policy, Elsevier, vol. 38(10), pages 5661-5670, October.
    10. Cohen, Barney, 2004. "Urban Growth in Developing Countries: A Review of Current Trends and a Caution Regarding Existing Forecasts," World Development, Elsevier, vol. 32(1), pages 23-51, January.
    11. Serwaa Mensah, Gifty & Kemausuor, Francis & Brew-Hammond, Abeeku, 2014. "Energy access indicators and trends in Ghana," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 317-323.
    12. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
    13. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198.
    14. Parajuli, Ranjan & Østergaard, Poul Alberg & Dalgaard, Tommy & Pokharel, Govind Raj, 2014. "Energy consumption projection of Nepal: An econometric approach," Renewable Energy, Elsevier, vol. 63(C), pages 432-444.
    15. Christopher A. Sims, 1986. "Are forecasting models usable for policy analysis?," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 10(Win), pages 2-16.
    16. Simon N. Wood, 2003. "Thin plate regression splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 95-114, February.
    17. Hailu, Yohannes G., 2012. "Measuring and monitoring energy access: Decision-support tools for policymakers in Africa," Energy Policy, Elsevier, vol. 47(S1), pages 56-63.
    18. Young‐Ju Kim & Chong Gu, 2004. "Smoothing spline Gaussian regression: more scalable computation via efficient approximation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 337-356, May.
    19. Kanagawa, Makoto & Nakata, Toshihiko, 2008. "Assessment of access to electricity and the socio-economic impacts in rural areas of developing countries," Energy Policy, Elsevier, vol. 36(6), pages 2016-2029, June.
    20. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935.
    21. Bhattacharyya, Subhes C., 2006. "Energy access problem of the poor in India: Is rural electrification a remedy?," Energy Policy, Elsevier, vol. 34(18), pages 3387-3397, December.
    22. Bazilian, Morgan & Sagar, Ambuj & Detchon, Reid & Yumkella, Kandeh, 2010. "More heat and light," Energy Policy, Elsevier, vol. 38(10), pages 5409-5412, October.
    23. Måns Nilsson & Paul Lucas & Tetsuro Yoshida, 2013. "Towards an Integrated Framework for SDGs: Ultimate and Enabling Goals for the Case of Energy," Sustainability, MDPI, vol. 5(10), pages 1-28, September.
    24. Hussain, Anwar & Rahman, Muhammad & Memon, Junaid Alam, 2016. "Forecasting electricity consumption in Pakistan: the way forward," Energy Policy, Elsevier, vol. 90(C), pages 73-80.
    25. Bhattacharyya, Subhes C. & Ohiare, Sanusi, 2012. "The Chinese electricity access model for rural electrification: Approach, experience and lessons for others," Energy Policy, Elsevier, vol. 49(C), pages 676-687.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mu-Xing Lin & Hwa Meei Liou & Kuei Tien Chou, 2020. "National Energy Transition Framework toward SDG7 with Legal Reforms and Policy Bundles: The Case of Taiwan and Its Comparison with Japan," Energies, MDPI, vol. 13(6), pages 1-20, March.
    2. Osman, Ibrahim H. & Zablith, Fouad, 2021. "Re-evaluating electronic government development index to monitor the transformation toward achieving sustainable development goals," Journal of Business Research, Elsevier, vol. 131(C), pages 426-440.
    3. Marco Cruz-Sandoval & Elisabet Roca & María Isabel Ortego, 2020. "Compositional Data Analysis Approach in the Measurement of Social-Spatial Segregation: Towards a Sustainable and Inclusive City," Sustainability, MDPI, vol. 12(10), pages 1-19, May.
    4. Krzysztof Dmytrów & Beata Bieszk-Stolorz & Joanna Landmesser-Rusek, 2022. "Sustainable Energy in European Countries: Analysis of Sustainable Development Goal 7 Using the Dynamic Time Warping Method," Energies, MDPI, vol. 15(20), pages 1-17, October.
    5. Fatine Ezbakhe & Agustí Pérez Foguet, 2020. "Child mortality levels and trends: A new compositional approach," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 43(43), pages 1263-1296.
    6. Sen, Doruk & Tunç, K.M. Murat & Günay, M. Erdem, 2021. "Forecasting electricity consumption of OECD countries: A global machine learning modeling approach," Utilities Policy, Elsevier, vol. 70(C).
    7. Marco Cruz-Sandoval & María Isabel Ortego & Elisabet Roca, 2020. "Tree Ecosystem Services, for Everyone? A Compositional Analysis Approach to Assess the Distribution of Urban Trees as an Indicator of Environmental Justice," Sustainability, MDPI, vol. 12(3), pages 1-21, February.
    8. Vinoth Kumar Ponnusamy & Padmanathan Kasinathan & Rajvikram Madurai Elavarasan & Vinoth Ramanathan & Ranjith Kumar Anandan & Umashankar Subramaniam & Aritra Ghosh & Eklas Hossain, 2021. "A Comprehensive Review on Sustainable Aspects of Big Data Analytics for the Smart Grid," Sustainability, MDPI, vol. 13(23), pages 1-35, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Vaona & Natalia Magnani, 2014. "Access to electricity and socio-economic characteristics: panel data evidence from 31 countries," Working Papers 15/2014, University of Verona, Department of Economics.
    2. He, Gang & Victor, David G., 2017. "Experiences and lessons from China’s success in providing electricity for all," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 335-338.
    3. Nieves, J.A. & Aristizábal, A.J. & Dyner, I. & Báez, O. & Ospina, D.H., 2019. "Energy demand and greenhouse gas emissions analysis in Colombia: A LEAP model application," Energy, Elsevier, vol. 169(C), pages 380-397.
    4. Mertzanis, Charilaos & Garas, Samy & Abdel-Maksoud, Ahmed, 2020. "Integrity of financial information and firms' access to energy in developing countries," Energy Economics, Elsevier, vol. 92(C).
    5. Serwaa Mensah, Gifty & Kemausuor, Francis & Brew-Hammond, Abeeku, 2014. "Energy access indicators and trends in Ghana," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 317-323.
    6. Rozita Singh & Xiao Wang & Juan Carlos Mendoza & Emmanuel Kofi Ackom, 2015. "Electricity (in)accessibility to the urban poor in developing countries," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(4), pages 339-353, July.
    7. Mahumane, Gilberto & Mulder, Peter, 2016. "Introducing MOZLEAP: An integrated long-run scenario model of the emerging energy sector of Mozambique," Energy Economics, Elsevier, vol. 59(C), pages 275-289.
    8. Roberts, Simon H. & Foran, Barney D. & Axon, Colin J. & Warr, Benjamin S. & Goddard, Nigel H., 2018. "Consequences of selecting technology pathways on cumulative carbon dioxide emissions for the United Kingdom," Applied Energy, Elsevier, vol. 228(C), pages 409-425.
    9. Ziyi Wang & Zengqiao Chen & Cuiping Ma & Ronald Wennersten & Qie Sun, 2022. "Nationwide Evaluation of Urban Energy System Resilience in China Using a Comprehensive Index Method," Sustainability, MDPI, vol. 14(4), pages 1-36, February.
    10. Ridgill, Michael & Neill, Simon P. & Lewis, Matt J. & Robins, Peter E. & Patil, Sopan D., 2021. "Global riverine theoretical hydrokinetic resource assessment," Renewable Energy, Elsevier, vol. 174(C), pages 654-665.
    11. Olaya, Yris & Vásquez, Felipe & Müller, Daniel B., 2017. "Dwelling stock dynamics for addressing housing deficit," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 187-199.
    12. Tafadzwa Makonese & Ayodeji P Ifegbesan & Isaac T Rampedi, 2018. "Household cooking fuel use patterns and determinants across southern Africa: Evidence from the demographic and health survey data," Energy & Environment, , vol. 29(1), pages 29-48, February.
    13. Zhou, Nan & Price, Lynn & Yande, Dai & Creyts, Jon & Khanna, Nina & Fridley, David & Lu, Hongyou & Feng, Wei & Liu, Xu & Hasanbeigi, Ali & Tian, Zhiyu & Yang, Hongwei & Bai, Quan & Zhu, Yuezhong & Xio, 2019. "A roadmap for China to peak carbon dioxide emissions and achieve a 20% share of non-fossil fuels in primary energy by 2030," Applied Energy, Elsevier, vol. 239(C), pages 793-819.
    14. Lucas, Paul L. & Nielsen, Jens & Calvin, Katherine & L. McCollum, David & Marangoni, Giacomo & Strefler, Jessica & van der Zwaan, Bob C.C. & van Vuuren, Detlef P., 2015. "Future energy system challenges for Africa: Insights from Integrated Assessment Models," Energy Policy, Elsevier, vol. 86(C), pages 705-717.
    15. Madeti, Siva Ramakrishna & Singh, S.N., 2017. "Monitoring system for photovoltaic plants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1180-1207.
    16. Vibhor Saxena & P.C. Bhattacharya, 2015. "Inequalities in accessing LPG and electricity consumption in India: The role of caste, tribe, and religion," Discussion Paper Series, School of Economics and Finance 201512, School of Economics and Finance, University of St Andrews, revised 25 Jun 2017.
    17. Sánchez, A.S. & Torres, E.A. & Kalid, R.A., 2015. "Renewable energy generation for the rural electrification of isolated communities in the Amazon Region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 278-290.
    18. Shafqut Ullah & Muhammad Khan & Seong-Min Yoon, 2021. "Measuring Energy Poverty and Its Impact on Economic Growth in Pakistan," Sustainability, MDPI, vol. 13(19), pages 1-19, October.
    19. Hannah Goozee, 2017. "Energy, Poverty and Development: A Primer for the Sustainable Development Goals," Working Papers id:11933, eSocialSciences.
    20. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:107:y:2019:i:c:p:388-398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.