IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v31y2006i14p2296-2320.html
   My bibliography  Save this article

A wind–diesel system with hydrogen storage: Joint optimisation of design and dispatch

Author

Listed:
  • Garcia, Raquel S.
  • Weisser, Daniel

Abstract

We compare two models to determine the size of grid units and dispatch in a wind-diesel power system with hydrogen storage. Both take as data 1-year time series of hourly wind speed and electricity demand, and their objective is to minimise cost. Our first model, based on linear programming, generates as output a combination of capacities and a year time series for the dispatch variables. Our second model runs a fixed dispatch rule over several capacity combinations and selects the cheapest option. The dispatch rule can then be improved through comparison with the linear programming solution. At present costs, the hydrogen storage-conversion system is excluded from the solutions, so the interesting operation rules associated with the option of harvesting do not arise. However, the costs of hydrogen storage technologies are decreasing with investment. By running our model with prospective costs for year 2010, we see storage emerge in the optimum, and thus a sample of the operation patterns that will occur in a renewable dominated grid.

Suggested Citation

  • Garcia, Raquel S. & Weisser, Daniel, 2006. "A wind–diesel system with hydrogen storage: Joint optimisation of design and dispatch," Renewable Energy, Elsevier, vol. 31(14), pages 2296-2320.
  • Handle: RePEc:eee:renene:v:31:y:2006:i:14:p:2296-2320
    DOI: 10.1016/j.renene.2005.11.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014810500337X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2005.11.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaldellis, J. K. & Kavadias, K. A., 2001. "Optimal wind-hydro solution for Aegean Sea islands' electricity-demand fulfilment," Applied Energy, Elsevier, vol. 70(4), pages 333-354, December.
    2. Sanghvi, Arun P., 1983. "Optimal electricity supply reliability using customer shortage costs," Energy Economics, Elsevier, vol. 5(2), pages 129-136, April.
    3. Anderson, Roland & Taylor, Lewis, 1986. "The social cost of unsupplied electricity : A critical review," Energy Economics, Elsevier, vol. 8(3), pages 139-146, July.
    4. González, A. & McKeogh, E. & Gallachóir, B.Ó., 2004. "The role of hydrogen in high wind energy penetration electricity systems: The Irish case," Renewable Energy, Elsevier, vol. 29(4), pages 471-489.
    5. Wright, Raymond M, 2001. "Wind energy development in the Caribbean," Renewable Energy, Elsevier, vol. 24(3), pages 439-444.
    6. Duic, Neven & da Graça Carvalho, Maria, 2004. "Increasing renewable energy sources in island energy supply: case study Porto Santo," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(4), pages 383-399, August.
    7. Balaras, C.A. & Santamouris, M. & Asimakopoulos, D.N. & Argiriou, A.A. & Paparsenos, G. & Gaglia, A.G., 1999. "Energy policy and an action plan for renewable energy sources (RES) for the Hellenic islands of the North Aegean region," Energy, Elsevier, vol. 24(4), pages 335-350.
    8. Daniel Weisser, 2004. "An analysis of Grenada's power sector and energy resources: a role for renewable energy technologies?," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 21(1/2), pages 189-218.
    9. McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
    10. Anderson, Dennis & Leach, Matthew, 2004. "Harvesting and redistributing renewable energy: on the role of gas and electricity grids to overcome intermittency through the generation and storage of hydrogen," Energy Policy, Elsevier, vol. 32(14), pages 1603-1614, September.
    11. Neij, Lena, 1997. "Use of experience curves to analyse the prospects for diffusion and adoption of renewable energy technology," Energy Policy, Elsevier, vol. 25(13), pages 1099-1107, November.
    12. Grubb, M. J., 1991. "The integration of renewable electricity sources," Energy Policy, Elsevier, vol. 19(7), pages 670-688, September.
    13. Mayer, Peter C., 2000. "Reliability economies of scale for tropical island electric power," Energy Economics, Elsevier, vol. 22(3), pages 319-330, June.
    14. Isherwood, William & Smith, J.Ray & Aceves, Salvador M & Berry, Gene & Clark, Woodrow & Johnson, Ronald & Das, Deben & Goering, Douglas & Seifert, Richard, 2000. "Remote power systems with advanced storage technologies for Alaskan villages," Energy, Elsevier, vol. 25(10), pages 1005-1020.
    15. Jaramillo, O.A. & Borja, M.A. & Huacuz, J.M., 2004. "Using hydropower to complement wind energy: a hybrid system to provide firm power," Renewable Energy, Elsevier, vol. 29(11), pages 1887-1909.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weisser, Daniel, 2004. "Power sector reform in small island developing states: what role for renewable energy technologies?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(2), pages 101-127, April.
    2. Weisser, Daniel, 2004. "On the economics of electricity consumption in small island developing states: a role for renewable energy technologies?," Energy Policy, Elsevier, vol. 32(1), pages 127-140, January.
    3. Weisser, Daniel, 2004. "Costing electricity supply scenarios: A case study of promoting renewable energy technologies on Rodriguez, Mauritius," Renewable Energy, Elsevier, vol. 29(8), pages 1319-1347.
    4. Weisser, D, 2003. "A wind energy analysis of Grenada: an estimation using the ‘Weibull’ density function," Renewable Energy, Elsevier, vol. 28(11), pages 1803-1812.
    5. Fokaides, Paris A. & Kylili, Angeliki, 2014. "Towards grid parity in insular energy systems: The case of photovoltaics (PV) in Cyprus," Energy Policy, Elsevier, vol. 65(C), pages 223-228.
    6. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    7. Lafond, François & Bailey, Aimee Gotway & Bakker, Jan David & Rebois, Dylan & Zadourian, Rubina & McSharry, Patrick & Farmer, J. Doyne, 2018. "How well do experience curves predict technological progress? A method for making distributional forecasts," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 104-117.
    8. Bolinger, Mark & Wiser, Ryan, 2009. "Wind power price trends in the United States: Struggling to remain competitive in the face of strong growth," Energy Policy, Elsevier, vol. 37(3), pages 1061-1071, March.
    9. Ibenholt, Karin, 2002. "Explaining learning curves for wind power," Energy Policy, Elsevier, vol. 30(13), pages 1181-1189, October.
    10. Dosi, Giovanni & Grazzi, Marco & Mathew, Nanditha, 2017. "The cost-quantity relations and the diverse patterns of “learning by doing”: Evidence from India," Research Policy, Elsevier, vol. 46(10), pages 1873-1886.
    11. Junginger, M. & Faaij, A. & Turkenburg, W. C., 2005. "Global experience curves for wind farms," Energy Policy, Elsevier, vol. 33(2), pages 133-150, January.
    12. Ozbafli, Aygul & Jenkins, Glenn P., 2016. "Estimating the willingness to pay for reliable electricity supply: A choice experiment study," Energy Economics, Elsevier, vol. 56(C), pages 443-452.
    13. Denault, Michel & Dupuis, Debbie & Couture-Cardinal, Sébastien, 2009. "Complementarity of hydro and wind power: Improving the risk profile of energy inflows," Energy Policy, Elsevier, vol. 37(12), pages 5376-5384, December.
    14. Yu, C.F. & van Sark, W.G.J.H.M. & Alsema, E.A., 2011. "Unraveling the photovoltaic technology learning curve by incorporation of input price changes and scale effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 324-337, January.
    15. Cong, Rong-Gang & Shen, Shaochuan, 2014. "How to Develop Renewable Power in China? A Cost-Effective Perspective," MPRA Paper 112209, University Library of Munich, Germany.
    16. Schenk, Niels J. & Moll, Henri C. & Potting, José & Benders, René M.J., 2007. "Wind energy, electricity, and hydrogen in the Netherlands," Energy, Elsevier, vol. 32(10), pages 1960-1971.
    17. Serra, Pablo & Fierro, Gabriel, 1997. "Outage costs in Chilean industry," Energy Economics, Elsevier, vol. 19(4), pages 417-434, October.
    18. Dosi, Giovanni & Nelson, Richard R., 2010. "Technical Change and Industrial Dynamics as Evolutionary Processes," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 51-127, Elsevier.
    19. Lindman, Åsa & Söderholm, Patrik, 2012. "Wind power learning rates: A conceptual review and meta-analysis," Energy Economics, Elsevier, vol. 34(3), pages 754-761.
    20. Musiliu 0. Oseni & Michael G. Pollitt, 2013. "The Economic Costs of Unsupplied Electricty: Evidence from Backup Generation among African Firms," Cambridge Working Papers in Economics 1351, Faculty of Economics, University of Cambridge.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:31:y:2006:i:14:p:2296-2320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.