IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v134y2019icp1-13.html
   My bibliography  Save this article

The evolution of electricity price on the German day-ahead market before and after the energy switch

Author

Listed:
  • Khoshrou, Abdolrahman
  • Dorsman, André B.
  • Pauwels, Eric J.

Abstract

Germany is a forerunner in developing renewable energies. It is therefore of considerable interest to investigate the impact of switch to renewables on the market during transition era. The aim of this study is in two parts: 1) Investigating the volatility; and 2) Conducting a descriptive study on the evolution of daily profiles and emergence of non-positive prices. In terms of volatility quantification, the following characteristics of EPEX prices should be recognized: 1) Covering the whole year (24/7); 2) Taking non-positive values; 3) Depending on calendar information; and 4) Changing according to demand and supply availability. We, therefore, propose a robust and generic approach to account for diurnal or seasonal patterns of human activities in volatility analysis. An important distinction of our work is in introducing an alternative representation (as matrices) for quasi-periodic price data. We, herein, propose a new notion of volatility using a matrix decomposition technique, namely the singular value decomposition (SVD). Our observations indicate price volatility reduction, in the recent years. The second part of this article provides evidences of effect of renewables on daily price profiles – emergence of non-positive prices and also shifts of peak price values to hours where solar is less available.

Suggested Citation

  • Khoshrou, Abdolrahman & Dorsman, André B. & Pauwels, Eric J., 2019. "The evolution of electricity price on the German day-ahead market before and after the energy switch," Renewable Energy, Elsevier, vol. 134(C), pages 1-13.
  • Handle: RePEc:eee:renene:v:134:y:2019:i:c:p:1-13
    DOI: 10.1016/j.renene.2018.10.101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118313077
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.10.101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cludius, Johanna & Hermann, Hauke & Matthes, Felix Chr. & Graichen, Verena, 2014. "The merit order effect of wind and photovoltaic electricity generation in Germany 2008–2016: Estimation and distributional implications," Energy Economics, Elsevier, vol. 44(C), pages 302-313.
    2. Würzburg, Klaas & Labandeira, Xavier & Linares, Pedro, 2013. "Renewable generation and electricity prices: Taking stock and new evidence for Germany and Austria," Energy Economics, Elsevier, vol. 40(S1), pages 159-171.
    3. Swift-Hook, D.T. & Ter-Gazarian, A.G., 1994. "The value of storage on power systems with intermittent energy sources," Renewable Energy, Elsevier, vol. 5(5), pages 1479-1482.
    4. Karunathilake, Hirushie & Hewage, Kasun & Mérida, Walter & Sadiq, Rehan, 2019. "Renewable energy selection for net-zero energy communities: Life cycle based decision making under uncertainty," Renewable Energy, Elsevier, vol. 130(C), pages 558-573.
    5. Schaber, Katrin & Steinke, Florian & Hamacher, Thomas, 2012. "Transmission grid extensions for the integration of variable renewable energies in Europe: Who benefits where?," Energy Policy, Elsevier, vol. 43(C), pages 123-135.
    6. Denny, Eleanor & O'Mahoney, Amy & Lannoye, Eamonn, 2017. "Modelling the impact of wind generation on electricity market prices in Ireland: An econometric versus unit commitment approach," Renewable Energy, Elsevier, vol. 104(C), pages 109-119.
    7. Zipp, Alexander, 2017. "The marketability of variable renewable energy in liberalized electricity markets – An empirical analysis," Renewable Energy, Elsevier, vol. 113(C), pages 1111-1121.
    8. Brijs, Tom & De Vos, Kristof & De Jonghe, Cedric & Belmans, Ronnie, 2015. "Statistical analysis of negative prices in European balancing markets," Renewable Energy, Elsevier, vol. 80(C), pages 53-60.
    9. Swift-Hook, Donald T., 2010. "Grid-connected intermittent renewables are the last to be stored," Renewable Energy, Elsevier, vol. 35(9), pages 1967-1969.
    10. Martinot, E., 1999. "Renewable energy in Russia: markets, development and technology transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 3(1), pages 49-75, March.
    11. Chaves-Ávila, J.P. & Fernandes, C., 2015. "The Spanish intraday market design: A successful solution to balance renewable generation?," Renewable Energy, Elsevier, vol. 74(C), pages 422-432.
    12. Simonsen, Ingve, 2005. "Volatility of power markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 10-20.
    13. Denny, E. & Tuohy, A. & Meibom, P. & Keane, A. & Flynn, D. & Mullane, A. & O'Malley, M., 2010. "The impact of increased interconnection on electricity systems with large penetrations of wind generation: A case study of Ireland and Great Britain," Energy Policy, Elsevier, vol. 38(11), pages 6946-6954, November.
    14. Gullberg, Anne Therese & Ohlhorst, Dörte & Schreurs, Miranda, 2014. "Towards a low carbon energy future – Renewable energy cooperation between Germany and Norway," Renewable Energy, Elsevier, vol. 68(C), pages 216-222.
    15. Barnham, Keith & Knorr, Kaspar & Mazzer, Massimo, 2013. "Benefits of photovoltaic power in supplying national electricity demand," Energy Policy, Elsevier, vol. 54(C), pages 385-390.
    16. Vasileva, Evgeniia & Viljainen, Satu & Sulamaa, Pekka & Kuleshov, Dmitry, 2015. "RES support in Russia: Impact on capacity and electricity market prices," Renewable Energy, Elsevier, vol. 76(C), pages 82-90.
    17. Baillie, Richard T & Chung, Ching-Fan & Tieslau, Margie A, 1996. "Analysing Inflation by the Fractionally Integrated ARFIMA-GARCH Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(1), pages 23-40, Jan.-Feb..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Willeghems, Gwen & Buysse, Jeroen, 2019. "Improving the profitability of anaerobic digestion: is the public support framework compatible with participation in the day-ahead electricity market?," Renewable Energy, Elsevier, vol. 139(C), pages 560-572.
    2. Reichenberg, L. & Ekholm, T. & Boomsma, T., 2023. "Revenue and risk of variable renewable electricity investment: The cannibalization effect under high market penetration," Energy, Elsevier, vol. 284(C).
    3. Fontini, Fulvio & Vargiolu, Tiziano & Zormpas, Dimitrios, 2021. "Investing in electricity production under a reliability options scheme," Journal of Economic Dynamics and Control, Elsevier, vol. 126(C).
    4. Sirin, Selahattin Murat & Uz, Dilek & Sevindik, Irem, 2022. "How do variable renewable energy technologies affect firm-level day-ahead output decisions: Evidence from the Turkish wholesale electricity market," Energy Economics, Elsevier, vol. 112(C).
    5. Zhang, Xian & Wang, Jia-Xing & Cao, Zhe & Shen, Shuo & Meng, Shuo & Fan, Jing-Li, 2021. "What is driving the remarkable decline of wind and solar power curtailment in China? Evidence from China and four typical provinces," Renewable Energy, Elsevier, vol. 174(C), pages 31-42.
    6. Edmunds, Calum & Martín-Martínez, Sergio & Browell, Jethro & Gómez-Lázaro, Emilio & Galloway, Stuart, 2019. "On the participation of wind energy in response and reserve markets in Great Britain and Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    7. Sirin, Selahattin Murat & Yilmaz, Berna N., 2021. "The impact of variable renewable energy technologies on electricity markets: An analysis of the Turkish balancing market," Energy Policy, Elsevier, vol. 151(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdolrahman Khoshrou & Eric J. Pauwels, 2018. "Quantifying Volatility Reduction in German Day-ahead Spot Market in the Period 2006 through 2016," Papers 1807.07328, arXiv.org.
    2. Hu, Jing & Harmsen, Robert & Crijns-Graus, Wina & Worrell, Ernst & van den Broek, Machteld, 2018. "Identifying barriers to large-scale integration of variable renewable electricity into the electricity market: A literature review of market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2181-2195.
    3. Kolb, Sebastian & Dillig, Marius & Plankenbühler, Thomas & Karl, Jürgen, 2020. "The impact of renewables on electricity prices in Germany - An update for the years 2014–2018," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Di Cosmo, Valeria & Malaguzzi Valeri, Laura, 2018. "Wind, storage, interconnection and the cost of electricity generation," Energy Economics, Elsevier, vol. 69(C), pages 1-18.
    5. Bell, William Paul & Wild, Phillip & Foster, John & Hewson, Michael, 2017. "Revitalising the wind power induced merit order effect to reduce wholesale and retail electricity prices in Australia," Energy Economics, Elsevier, vol. 67(C), pages 224-241.
    6. Bigerna, Simona & Bollino, Carlo Andrea & Ciferri, Davide & Polinori, Paolo, 2017. "Renewables diffusion and contagion effect in Italian regional electricity markets: Assessment and policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 199-211.
    7. Tsai, Chen-Hao & Eryilmaz, Derya, 2018. "Effect of wind generation on ERCOT nodal prices," Energy Economics, Elsevier, vol. 76(C), pages 21-33.
    8. Macedo, Daniela Pereira & Marques, António Cardoso & Damette, Olivier, 2021. "The Merit-Order Effect on the Swedish bidding zone with the highest electricity flow in the Elspot market," Energy Economics, Elsevier, vol. 102(C).
    9. Shao, Jing & Chen, Huanhuan & Li, Jinke & Liu, Guy, 2022. "An evaluation of the consumer-funded renewable obligation scheme in the UK for wind power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    10. Auer, Benjamin R., 2016. "How does Germany's green energy policy affect electricity market volatility? An application of conditional autoregressive range models," Energy Policy, Elsevier, vol. 98(C), pages 621-628.
    11. Macedo, Daniela Pereira & Marques, António Cardoso & Damette, Olivier, 2020. "The impact of the integration of renewable energy sources in the electricity price formation: is the Merit-Order Effect occurring in Portugal?," Utilities Policy, Elsevier, vol. 66(C).
    12. Hakan Acaroğlu & Fausto Pedro García Márquez, 2021. "Comprehensive Review on Electricity Market Price and Load Forecasting Based on Wind Energy," Energies, MDPI, vol. 14(22), pages 1-23, November.
    13. Bernath, Christiane & Deac, Gerda & Sensfuß, Frank, 2021. "Impact of sector coupling on the market value of renewable energies – A model-based scenario analysis," Applied Energy, Elsevier, vol. 281(C).
    14. Janda, Karel & Tuma, Ladislav, 2016. "Market viability of photovoltaic plants: merit order effect approach," MPRA Paper 74884, University Library of Munich, Germany.
    15. Sébastien Phan & Fabien Roques, 2015. "Is the depressive effect of renewables on power prices contagious? A cross border econometric analysis," Cambridge Working Papers in Economics 1527, Faculty of Economics, University of Cambridge.
    16. Csereklyei, Zsuzsanna & Qu, Songze & Ancev, Tihomir, 2019. "The effect of wind and solar power generation on wholesale electricity prices in Australia," Energy Policy, Elsevier, vol. 131(C), pages 358-369.
    17. Thomaidis, Nikolaos S. & Biskas, Pandelis N., 2021. "Fundamental pricing laws and long memory effects in the day-ahead power market," Energy Economics, Elsevier, vol. 100(C).
    18. Mwampashi, Muthe Mathias & Nikitopoulos, Christina Sklibosios & Konstandatos, Otto & Rai, Alan, 2021. "Wind generation and the dynamics of electricity prices in Australia," Energy Economics, Elsevier, vol. 103(C).
    19. Angelica, Gianfreda & Lucia, Parisio & Matteo, Pelagatti, 2017. "The RES-induced Switching Effect Across Fossil Fuels: An Analysis of the Italian Day-Ahead and Balancing Prices and Their Connected Costs," Working Papers 360, University of Milano-Bicocca, Department of Economics, revised 03 Feb 2017.
    20. Kaltenegger, Oliver & Löschel, Andreas & Baikowski, Martin & Lingens, Jörg, 2017. "Energy costs in Germany and Europe: An assessment based on a (total real unit) energy cost accounting framework," Energy Policy, Elsevier, vol. 104(C), pages 419-430.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:134:y:2019:i:c:p:1-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.