IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v38y2010i11p6946-6954.html
   My bibliography  Save this article

The impact of increased interconnection on electricity systems with large penetrations of wind generation: A case study of Ireland and Great Britain

Author

Listed:
  • Denny, E.
  • Tuohy, A.
  • Meibom, P.
  • Keane, A.
  • Flynn, D.
  • Mullane, A.
  • O'Malley, M.

Abstract

Increased interconnection has been highlighted as potentially facilitating the integration of wind generation in power systems by increasing the flexibility to balance the variable wind output. This paper utilizes a stochastic unit commitment model to simulate the impacts of increased interconnection for the island of Ireland with large penetrations of wind generation. The results suggest that increased interconnection should reduce average prices in Ireland, and the variability of those prices. The simulations also suggest that while increased interconnection may reduce carbon dioxide emissions in Ireland, Great Britain would experience an increase in emissions, resulting in total emissions remaining almost unchanged. The studies suggest that increased interconnection would not reduce excess wind generation. This is because under unit commitment techniques which incorporate wind power forecasts in the scheduling decisions, wind curtailment is minimal even with low levels of interconnection. As would be expected an increase in interconnection should improve system adequacy considerably with a significant reduction in the number of hours when the load and reserve constraints are not met.

Suggested Citation

  • Denny, E. & Tuohy, A. & Meibom, P. & Keane, A. & Flynn, D. & Mullane, A. & O'Malley, M., 2010. "The impact of increased interconnection on electricity systems with large penetrations of wind generation: A case study of Ireland and Great Britain," Energy Policy, Elsevier, vol. 38(11), pages 6946-6954, November.
  • Handle: RePEc:eee:enepol:v:38:y:2010:i:11:p:6946-6954
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(10)00540-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tuohy, Aidan & Meibom, Peter & Denny, Eleanor & O'Malley, Mark, 2009. "Unit commitment for systems with significant wind penetration," MPRA Paper 34849, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    2. Vithayasrichareon, Peerapat & MacGill, Iain F., 2013. "Assessing the value of wind generation in future carbon constrained electricity industries," Energy Policy, Elsevier, vol. 53(C), pages 400-412.
    3. Osório, G.J. & Lujano-Rojas, J.M. & Matias, J.C.O. & Catalão, J.P.S., 2015. "A probabilistic approach to solve the economic dispatch problem with intermittent renewable energy sources," Energy, Elsevier, vol. 82(C), pages 949-959.
    4. Bingke Yan & Bo Wang & Lin Zhu & Hesen Liu & Yilu Liu & Xingpei Ji & Dichen Liu, 2015. "A Novel, Stable, and Economic Power Sharing Scheme for an Autonomous Microgrid in the Energy Internet," Energies, MDPI, vol. 8(11), pages 1-24, November.
    5. Katrin Trepper & Michael Bucksteeg & Christoph Weber, 2013. "An integrated approach to model redispatch and to assess potential benefits from market splitting in Germany," EWL Working Papers 1319, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Apr 2014.
    6. Gokturk Poyrazoglu & HyungSeon Oh, 2019. "Co-optimization of Transmission Maintenance Scheduling and Production Cost Minimization," Energies, MDPI, vol. 12(15), pages 1-18, July.
    7. Nyamdash, Batsaikhan & Denny, Eleanor, 2013. "The impact of electricity storage on wholesale electricity prices," Energy Policy, Elsevier, vol. 58(C), pages 6-16.
    8. Lamadrid, Alberto J. & Mount, Tim, 2012. "Ancillary services in systems with high penetrations of renewable energy sources, the case of ramping," Energy Economics, Elsevier, vol. 34(6), pages 1959-1971.
    9. Ying-Yi Hong & Gerard Francesco DG. Apolinario, 2021. "Uncertainty in Unit Commitment in Power Systems: A Review of Models, Methods, and Applications," Energies, MDPI, vol. 14(20), pages 1-47, October.
    10. Xiaohua Zhang & Jun Xie & Zhengwei Zhu & Jianfeng Zheng & Hao Qiang & Hailong Rong, 2016. "Smart Grid Cost-Emission Unit Commitment via Co-Evolutionary Agents," Energies, MDPI, vol. 9(10), pages 1-13, October.
    11. Andrychowicz, Mateusz & Olek, Blazej & Przybylski, Jakub, 2017. "Review of the methods for evaluation of renewable energy sources penetration and ramping used in the Scenario Outlook and Adequacy Forecast 2015. Case study for Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 703-714.
    12. Abdul Rauf & Mahmoud Kassas & Muhammad Khalid, 2022. "Data-Driven Optimal Battery Storage Sizing for Grid-Connected Hybrid Distributed Generations Considering Solar and Wind Uncertainty," Sustainability, MDPI, vol. 14(17), pages 1-27, September.
    13. Felten, Björn & Weber, Christoph, 2018. "The value(s) of flexible heat pumps – Assessment of technical and economic conditions," Applied Energy, Elsevier, vol. 228(C), pages 1292-1319.
    14. Misconel, S. & Leisen, R. & Mikurda, J. & Zimmermann, F. & Fraunholz, C. & Fichtner, W. & Möst, D. & Weber, C., 2022. "Systematic comparison of high-resolution electricity system modeling approaches focusing on investment, dispatch and generation adequacy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    15. repec:dui:wpaper:1305 is not listed on IDEAS
    16. De Vos, K. & Stevens, N. & Devolder, O. & Papavasiliou, A. & Hebb, B. & Matthys-Donnadieu, J., 2019. "Dynamic dimensioning approach for operating reserves: Proof of concept in Belgium," Energy Policy, Elsevier, vol. 124(C), pages 272-285.
    17. Govind Joshi & Salman Mohagheghi, 2021. "Optimal Operation of Combined Energy and Water Systems for Community Resilience against Natural Disasters," Energies, MDPI, vol. 14(19), pages 1-19, September.
    18. Lin, Jin & Cheng, Lin & Chang, Yao & Zhang, Kai & Shu, Bin & Liu, Guangyi, 2014. "Reliability based power systems planning and operation with wind power integration: A review to models, algorithms and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 921-934.
    19. Keane, A. & Tuohy, A. & Meibom, P. & Denny, E. & Flynn, D. & Mullane, A. & O'Malley, M., 2011. "Demand side resource operation on the Irish power system with high wind power penetration," Energy Policy, Elsevier, vol. 39(5), pages 2925-2934, May.
    20. Salci, Sener & Jenkins, Glenn, 2016. "An Economic and Stakeholder Analysis for the Design of IPP Contracts for Wind Farms," MPRA Paper 70578, University Library of Munich, Germany.
    21. Zhu, Xu & Yang, Jun & Pan, Xueli & Li, Gaojunjie & Rao, Yingqing, 2020. "Regional integrated energy system energy management in an industrial park considering energy stepped utilization," Energy, Elsevier, vol. 201(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:38:y:2010:i:11:p:6946-6954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.