IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v236y2021ics0925527321001080.html
   My bibliography  Save this article

Designing a reliable electric vehicle charging station expansion under uncertainty

Author

Listed:
  • Quddus, Md Abdul
  • Shahvari, Omid
  • Marufuzzaman, Mohammad
  • Ekşioğlu, Sandra D.
  • Castillo-Villar, Krystel K.

Abstract

This study proposes a novel disruption prevention model that considers both long-term expansion decisions and short-term operational decisions to design and manage an electric vehicle charging station network under power demand uncertainty. A non-linear term is introduced into the model to prevent the evolution of excessive temperature on a power line under different exogenous factors (e.g., outside temperature, air velocity). We first linearize the model using extensions of McCormick relaxation technique and then solve using a combined Sample Average Approximation with a Scenario Decomposition algorithm. A real life case study is presented to draw a several key managerial insights. It is observed that the disruption prevention model is able to reduce 16% overall system cost upon a power outage. The results of the analysis help decision-makers achieving a more reliable and cost-effective electricity supply network.

Suggested Citation

  • Quddus, Md Abdul & Shahvari, Omid & Marufuzzaman, Mohammad & Ekşioğlu, Sandra D. & Castillo-Villar, Krystel K., 2021. "Designing a reliable electric vehicle charging station expansion under uncertainty," International Journal of Production Economics, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:proeco:v:236:y:2021:i:c:s0925527321001080
    DOI: 10.1016/j.ijpe.2021.108132
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527321001080
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2021.108132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Monique Guignard, 2003. "Lagrangean relaxation," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 11(2), pages 151-200, December.
    2. He, Fang & Wu, Di & Yin, Yafeng & Guan, Yongpei, 2013. "Optimal deployment of public charging stations for plug-in hybrid electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 87-101.
    3. Arslan, Okan & Karaşan, Oya Ekin, 2016. "A Benders decomposition approach for the charging station location problem with plug-in hybrid electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 670-695.
    4. Chung, Sung Hoon & Kwon, Changhyun, 2015. "Multi-period planning for electric car charging station locations: A case of Korean Expressways," European Journal of Operational Research, Elsevier, vol. 242(2), pages 677-687.
    5. Zhang, Anpeng & Kang, Jee Eun & Kwon, Changhyun, 2017. "Incorporating demand dynamics in multi-period capacitated fast-charging location planning for electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 5-29.
    6. Kavousi-Fard, Abdollah & Khodaei, Amin, 2016. "Efficient integration of plug-in electric vehicles via reconfigurable microgrids," Energy, Elsevier, vol. 111(C), pages 653-663.
    7. Tang, Ching-Hui, 2011. "A scenario decomposition-genetic algorithm method for solving stochastic air cargo container loading problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(4), pages 520-531, July.
    8. Quddus, Md Abdul & Kabli, Mohannad & Marufuzzaman, Mohammad, 2019. "Modeling electric vehicle charging station expansion with an integration of renewable energy and Vehicle-to-Grid sources," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 251-279.
    9. Fathabadi, Hassan, 2015. "Utilization of electric vehicles and renewable energy sources used as distributed generators for improving characteristics of electric power distribution systems," Energy, Elsevier, vol. 90(P1), pages 1100-1110.
    10. Schütz, Peter & Tomasgard, Asgeir & Ahmed, Shabbir, 2009. "Supply chain design under uncertainty using sample average approximation and dual decomposition," European Journal of Operational Research, Elsevier, vol. 199(2), pages 409-419, December.
    11. de Vries, Harwin & Duijzer, Evelot, 2017. "Incorporating driving range variability in network design for refueling facilities," Omega, Elsevier, vol. 69(C), pages 102-114.
    12. Chang, Mei-Shiang & Tseng, Ya-Ling & Chen, Jing-Wen, 2007. "A scenario planning approach for the flood emergency logistics preparation problem under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 737-754, November.
    13. Vladimir I. Norkin & Yuri M. Ermoliev & Andrzej Ruszczyński, 1998. "On Optimal Allocation of Indivisibles Under Uncertainty," Operations Research, INFORMS, vol. 46(3), pages 381-395, June.
    14. Hosseini, Meysam & MirHassani, S.A., 2015. "Refueling-station location problem under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 84(C), pages 101-116.
    15. Shahzad Bhatti & Michael Lim & Ho-Yin Mak, 2015. "Alternative fuel station location model with demand learning," Annals of Operations Research, Springer, vol. 230(1), pages 105-127, July.
    16. Marshall L. Fisher, 1985. "An Applications Oriented Guide to Lagrangian Relaxation," Interfaces, INFORMS, vol. 15(2), pages 10-21, April.
    17. M Kazemi Zanjani & M Nourelfath & D Ait-Kadi, 2013. "A scenario decomposition approach for stochastic production planning in sawmills," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(1), pages 48-59, January.
    18. Kriett, Phillip Oliver & Salani, Matteo, 2012. "Optimal control of a residential microgrid," Energy, Elsevier, vol. 42(1), pages 321-330.
    19. Kuby, Michael & Lim, Seow, 2005. "The flow-refueling location problem for alternative-fuel vehicles," Socio-Economic Planning Sciences, Elsevier, vol. 39(2), pages 125-145, June.
    20. Santoso, Tjendera & Ahmed, Shabbir & Goetschalckx, Marc & Shapiro, Alexander, 2005. "A stochastic programming approach for supply chain network design under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 96-115, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kabli, Mohannad & Quddus, Md Abdul & Nurre, Sarah G. & Marufuzzaman, Mohammad & Usher, John M., 2020. "A stochastic programming approach for electric vehicle charging station expansion plans," International Journal of Production Economics, Elsevier, vol. 220(C).
    2. Quddus, Md Abdul & Kabli, Mohannad & Marufuzzaman, Mohammad, 2019. "Modeling electric vehicle charging station expansion with an integration of renewable energy and Vehicle-to-Grid sources," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 251-279.
    3. Lee, Chungmok & Han, Jinil, 2017. "Benders-and-Price approach for electric vehicle charging station location problem under probabilistic travel range," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 130-152.
    4. Xu, Min & Meng, Qiang, 2020. "Optimal deployment of charging stations considering path deviation and nonlinear elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 120-142.
    5. Xie, Fei & Lin, Zhenhong, 2021. "Integrated U.S. nationwide corridor charging infrastructure planning for mass electrification of inter-city trips," Applied Energy, Elsevier, vol. 298(C).
    6. Yang, Jun & Guo, Fang & Zhang, Min, 2017. "Optimal planning of swapping/charging station network with customer satisfaction," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 174-197.
    7. Yıldız, Barış & Olcaytu, Evren & Şen, Ahmet, 2019. "The urban recharging infrastructure design problem with stochastic demands and capacitated charging stations," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 22-44.
    8. Quddus, Md Abdul & Shahvari, Omid & Marufuzzaman, Mohammad & Usher, John M. & Jaradat, Raed, 2018. "A collaborative energy sharing optimization model among electric vehicle charging stations, commercial buildings, and power grid," Applied Energy, Elsevier, vol. 229(C), pages 841-857.
    9. Shen, Zuo-Jun Max & Feng, Bo & Mao, Chao & Ran, Lun, 2019. "Optimization models for electric vehicle service operations: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 462-477.
    10. Tran, Trung Hieu & Nagy, Gábor & Nguyen, Thu Ba T. & Wassan, Niaz A., 2018. "An efficient heuristic algorithm for the alternative-fuel station location problem," European Journal of Operational Research, Elsevier, vol. 269(1), pages 159-170.
    11. Kınay, Ömer Burak & Gzara, Fatma & Alumur, Sibel A., 2021. "Full cover charging station location problem with routing," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 1-22.
    12. Faping Wang & Rui Chen & Lixin Miao & Peng Yang & Bin Ye, 2019. "Location Optimization of Electric Vehicle Mobile Charging Stations Considering Multi-Period Stochastic User Equilibrium," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    13. Sushil R. Poudel & Md Abdul Quddus & Mohammad Marufuzzaman & Linkan Bian & Reuben F. Burch V, 2019. "Managing congestion in a multi-modal transportation network under biomass supply uncertainty," Annals of Operations Research, Springer, vol. 273(1), pages 739-781, February.
    14. Mahmutoğulları, Özlem & Yaman, Hande, 2023. "Robust alternative fuel refueling station location problem with routing under decision-dependent flow uncertainty," European Journal of Operational Research, Elsevier, vol. 306(1), pages 173-188.
    15. Joonho Ko & Tae-Hyoung Tommy Gim & Randall Guensler, 2017. "Locating refuelling stations for alternative fuel vehicles: a review on models and applications," Transport Reviews, Taylor & Francis Journals, vol. 37(5), pages 551-570, September.
    16. Van Can Nguyen & Chi-Tai Wang & Ying-Jiun Hsieh, 2021. "Electrification of Highway Transportation with Solar and Wind Energy," Sustainability, MDPI, vol. 13(10), pages 1-28, May.
    17. Li, Lei & Al Chami, Zaher & Manier, Hervé & Manier, Marie-Ange & Xue, Jian, 2021. "Incorporating fuel delivery in network design for hydrogen fueling stations: Formulation and two metaheuristic approaches," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    18. Trung Hieu Tran & Thu Ba T. Nguyen, 2019. "Alternative-fuel station network design under impact of station failures," Annals of Operations Research, Springer, vol. 279(1), pages 151-186, August.
    19. Arslan, Okan & Karaşan, Oya Ekin, 2016. "A Benders decomposition approach for the charging station location problem with plug-in hybrid electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 670-695.
    20. Derya Celik Turkoglu & Mujde Erol Genevois, 2020. "A comparative survey of service facility location problems," Annals of Operations Research, Springer, vol. 292(1), pages 399-468, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:236:y:2021:i:c:s0925527321001080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.