Advanced Search
MyIDEAS: Login to save this article or follow this journal

Asymmetric Information and Volatility Forecasting in Commodity Futures Markets

Contents:

Author Info

  • Liu, Qingfu
  • Wong, Ieokhou
  • An, Yunbi
  • Zhang, Jinqing
Registered author(s):

    Abstract

    This paper investigates the asymmetric characteristics of returns and volatilities of various Chinese commodity futures within the threshold stochastic volatility (THSV) framework with various distribution assumptions. To gauge the capabilities of THSV models in volatility forecasting, the values-at-risk (VaRs) for both long and short positions in these futures are estimated and analyzed. We demonstrate that the asymmetric THSV model outperforms the corresponding symmetric SV model, and that the THSV models with non-normal distributions can better fit the futures data than the standard THSV model. Our results clearly indicate that positive and negative news have asymmetric effects on the mean, variance, and variance persistence of all futures under consideration. We also document that modeling both the mean and variance asymmetries and the fat-tailed feature in return distributions is particularly important to accurately forecast the VaRs for long and short trading positions in commodity futures.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/pii/S0927538X13000747
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Pacific-Basin Finance Journal.

    Volume (Year): 26 (2014)
    Issue (Month): C ()
    Pages: 79-97

    as in new window
    Handle: RePEc:eee:pacfin:v:26:y:2014:i:c:p:79-97

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/pacfin

    Related research

    Keywords: Asymmetric characteristics; Threshold stochastic volatility model; Bayesian MCMC; Volatility forecasting; Commodity futures markets;

    Find related papers by JEL classification:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Ang, Andrew & Chen, Joseph, 2002. "Asymmetric correlations of equity portfolios," Journal of Financial Economics, Elsevier, vol. 63(3), pages 443-494, March.
    2. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    3. Braun, Phillip A & Nelson, Daniel B & Sunier, Alain M, 1995. " Good News, Bad News, Volatility, and Betas," Journal of Finance, American Finance Association, vol. 50(5), pages 1575-1603, December.
    4. Sangjoon Kim & Neil Shephard, 1994. "Stochastic volatility: likelihood inference and comparison with ARCH models," Economics Papers 3., Economics Group, Nuffield College, University of Oxford.
    5. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-17, October.
    6. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-62, November.
    7. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
    8. So, Mike K P & Lam, K & Li, W K, 1998. "A Stochastic Volatility Model with Markov Switching," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 244-53, April.
    9. Wang, H. Holly & Ke, Bingfan, 2005. "Efficiency tests of agricultural commodity futures markets in China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 49(2), June.
    10. Mike K. P. So & C. Y. Choi, 2009. "A threshold factor multivariate stochastic volatility model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(8), pages 712-735.
    11. So, Mike K P & Li, W K & Lam, K, 2002. "A Threshold Stochastic Volatility Model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(7), pages 473-500, November.
    12. Christie, Andrew A., 1982. "The stochastic behavior of common stock variances : Value, leverage and interest rate effects," Journal of Financial Economics, Elsevier, vol. 10(4), pages 407-432, December.
    13. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
    14. So, Mike K P & Li, W K, 1999. "Bayesian Unit-Root Testing in Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(4), pages 491-96, October.
    15. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    16. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
    17. Sheppard, Kevin & Cappiello, Lorenzo & Engle, Robert F., 2003. "Asymmetric dynamics in the correlations of global equity and bond returns," Working Paper Series 0204, European Central Bank.
    18. Dumas, Bernard & Luciano, Elisa, 1991. " An Exact Solution to a Dynamic Portfolio Choice Problem under Transactions Costs," Journal of Finance, American Finance Association, vol. 46(2), pages 577-95, June.
    19. Bekaert, Geert & Wu, Guojun, 2000. "Asymmetric Volatility and Risk in Equity Markets," Review of Financial Studies, Society for Financial Studies, vol. 13(1), pages 1-42.
    20. Tsiakas, Ilias, 2008. "Overnight information and stochastic volatility: A study of European and US stock exchanges," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 251-268, February.
    21. Liu, Qingfu & An, Yunbi, 2011. "Information transmission in informationally linked markets: Evidence from US and Chinese commodity futures markets," Journal of International Money and Finance, Elsevier, vol. 30(5), pages 778-795, September.
    22. Alex Frino & Dionigi Gerace & Andrew Lepone, 2008. "Limit order book, anonymity and market liquidity: evidence from the Sydney Futures Exchange," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 48(4), pages 561-573.
    23. Yu Xin & Gongmeng Chen & Michael Firth, 2006. "The Efficiency of the Chinese Commodity Futures Markets: Development and Empirical Evidence," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 14(2), pages 79-92.
    24. Andersen, Torben G. & Chung, Hyung-Jin & Sorensen, Bent E., 1999. "Efficient method of moments estimation of a stochastic volatility model: A Monte Carlo study," Journal of Econometrics, Elsevier, vol. 91(1), pages 61-87, July.
    25. Lien, Donald & Yang, Li, 2008. "Hedging with Chinese metal futures," Global Finance Journal, Elsevier, vol. 19(2), pages 123-138.
    26. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-72, June.
    27. Wu, Guojun, 2001. "The Determinants of Asymmetric Volatility," Review of Financial Studies, Society for Financial Studies, vol. 14(3), pages 837-59.
    28. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, 06.
    29. Cathy W. S. Chen & Mike K. P. So & Edward M. H. Lin, 2009. "Volatility forecasting with double Markov switching GARCH models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(8), pages 681-697.
    30. H. Holly Wang & Bingfan Ke, 2005. "Efficiency tests of agricultural commodity futures markets in China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 49(2), pages 125-141, 06.
    31. Longin, Francois M., 2000. "From value at risk to stress testing: The extreme value approach," Journal of Banking & Finance, Elsevier, vol. 24(7), pages 1097-1130, July.
    32. Kroner, Kenneth F & Ng, Victor K, 1998. "Modeling Asymmetric Comovements of Asset Returns," Review of Financial Studies, Society for Financial Studies, vol. 11(4), pages 817-44.
    33. Thomakos, Dimitrios D. & Wang, Tao, 2003. "Realized volatility in the futures markets," Journal of Empirical Finance, Elsevier, vol. 10(3), pages 321-353, May.
    34. Robert F. Engle & Victor K. Ng, 1991. "Measuring and Testing the Impact of News on Volatility," NBER Working Papers 3681, National Bureau of Economic Research, Inc.
    35. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:pacfin:v:26:y:2014:i:c:p:79-97. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.