Advanced Search
MyIDEAS: Login

Arbitrage and control problems in finance: A presentation

Contents:

Author Info

  • Jouini, Elyes

Abstract

The theory of asset pricing takes its roots in the Arrow-Debreu model (see,for instance, Debreu 1959, Chap. 7), the Black and Scholes (1973) formula,and the Cox and Ross (1976) linear pricing model. This theory and its link to arbitrage has been formalized in a general framework by Harrison and Kreps (1979), Harrison and Pliska (1981, 1983), and Du¢e and Huang (1986). In these models, security markets are assumed to be frictionless: securities can be sold short in unlimited amounts, the borrowing and lending rates are equal, and there is no transaction cost. The main result is that the price process of traded securities is arbitrage free if and only if there exists some equivalent probability measure that transforms it into a martingale, when normalized by the numeraire. Contingent claims can then be priced by taking the expected value of their (normalized) payo§ with respect to any equivalent martingale measure. If this value is unique, the claim is said to be priced by arbitrage and it can be perfectly hedged (i.e. duplicated) by dynamic trading. When the markets are dynamically complete, there is only one such a and any contingent claim is priced by arbitrage. The of each state of the world for this probability measure can be interpreted as the state price of the economy (the prices of $1 tomorrow in that state of the world) as well as the marginal utilities (for consumption in that state of the world) of rational agents maximizing their expected utility.

(This abstract was borrowed from another version of this item.)

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6VBY-42YFB5V-1/2/c13a797f4f5da52ba69a655c57d6068b
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Journal of Mathematical Economics.

Volume (Year): 35 (2001)
Issue (Month): 2 (April)
Pages: 167-183

as in new window
Handle: RePEc:eee:mateco:v:35:y:2001:i:2:p:167-183

Contact details of provider:
Web page: http://www.elsevier.com/locate/jmateco

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Laurence Carassus & Elyès Jouini, 1998. "Investment and Arbitrage Opportunities with Short Sales Constraints," Mathematical Finance, Wiley Blackwell, vol. 8(3), pages 169-178.
  2. Dokuchaev, Nikolai & Yu Zhou, Xun, 2001. "Optimal investment strategies with bounded risks, general utilities, and goal achieving," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 289-309, April.
  3. Domenico Cuoco & Jaksa Cvitanic, . "Optimal Consumption Choices for a "Large" Investor," Rodney L. White Center for Financial Research Working Papers 04-96, Wharton School Rodney L. White Center for Financial Research.
  4. repec:fth:inseep:9513 is not listed on IDEAS
  5. Elyès Jouini, 2003. "Market imperfections , equilibrium and arbitrage," Post-Print halshs-00167131, HAL.
  6. Freddy Delbaen, 1992. "Representing Martingale Measures When Asset Prices Are Continuous And Bounded," Mathematical Finance, Wiley Blackwell, vol. 2(2), pages 107-130.
  7. Jaksa Cvitanić & Ioannis Karatzas, 1996. "HEDGING AND PORTFOLIO OPTIMIZATION UNDER TRANSACTION COSTS: A MARTINGALE APPROACH-super-2," Mathematical Finance, Wiley Blackwell, vol. 6(2), pages 133-165.
  8. Elyès Jouini & Clotilde Napp, 1999. "Arbitrage and Investment Opportunities," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-034, New York University, Leonard N. Stern School of Business-.
  9. Kreps, David M., 1981. "Arbitrage and equilibrium in economies with infinitely many commodities," Journal of Mathematical Economics, Elsevier, vol. 8(1), pages 15-35, March.
  10. Jouini Elyes & Kallal Hedi, 1995. "Martingales and Arbitrage in Securities Markets with Transaction Costs," Journal of Economic Theory, Elsevier, vol. 66(1), pages 178-197, June.
  11. repec:fth:inseep:9830 is not listed on IDEAS
  12. Carassus, Laurence & Jouini, Elyes, 2000. "A discrete stochastic model for investment with an application to the transaction costs case," Journal of Mathematical Economics, Elsevier, vol. 33(1), pages 57-80, February.
  13. Elyégs Jouini & Hédi Kallal, 1995. "Arbitrage In Securities Markets With Short-Sales Constraints," Mathematical Finance, Wiley Blackwell, vol. 5(3), pages 197-232.
  14. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
  15. Carassus, Laurence & Jouini, Elyès, 2000. "A discrete stochastic model for investment with an application to the transaction costs case," Economics Papers from University Paris Dauphine 123456789/5595, Paris Dauphine University.
  16. Dumas, Bernard & Luciano, Elisa, 1991. " An Exact Solution to a Dynamic Portfolio Choice Problem under Transactions Costs," Journal of Finance, American Finance Association, vol. 46(2), pages 577-95, June.
  17. Hua He and Neil D. Pearson., 1989. "Consumption and Portfolio Policies with Incomplete Markets and Short-Sale Constraints: The Infinite Dimensional Case," Research Program in Finance Working Papers RPF-191, University of California at Berkeley.
  18. Duffie, Darrell & Zame, William, 1989. "The Consumption-Based Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 57(6), pages 1279-97, November.
  19. Cuoco, Domenico, 1997. "Optimal Consumption and Equilibrium Prices with Portfolio Constraints and Stochastic Income," Journal of Economic Theory, Elsevier, vol. 72(1), pages 33-73, January.
  20. Kallal, Hedi & Jouini, Elyès, 1995. "Martingales and arbitrage in securities markets with transaction costs," Economics Papers from University Paris Dauphine 123456789/5630, Paris Dauphine University.
  21. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "An Intertemporal General Equilibrium Model of Asset Prices," Econometrica, Econometric Society, vol. 53(2), pages 363-84, March.
  22. repec:fth:inseep:9514 is not listed on IDEAS
  23. Framstad, Nils Chr. & Oksendal, Bernt & Sulem, Agnes, 2001. "Optimal consumption and portfolio in a jump diffusion market with proportional transaction costs," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 233-257, April.
  24. Elyès Jouini & Hédi Kallal, 1999. "Viability and Equilibrium in Securities Markets with Frictions," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 275-292.
  25. Elyes Jouini & Clotilde Napp, 1999. "Continuous Time Equilibrium Pricing of Nonredundant Assets," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-008, New York University, Leonard N. Stern School of Business-.
  26. Constantinides, George M, 1986. "Capital Market Equilibrium with Transaction Costs," Journal of Political Economy, University of Chicago Press, vol. 94(4), pages 842-62, August.
  27. W. Schachermayer, 1994. "Martingale Measures For Discrete-Time Processes With Infinite Horizon," Mathematical Finance, Wiley Blackwell, vol. 4(1), pages 25-55.
  28. Nicole El Karoui & Monique Jeanblanc-Picqué, 1998. "Optimization of consumption with labor income," Finance and Stochastics, Springer, vol. 2(4), pages 409-440.
  29. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
  30. Y.M. Kabanov, 1999. "Hedging and liquidation under transaction costs in currency markets," Finance and Stochastics, Springer, vol. 3(2), pages 237-248.
  31. Huang, Chi-fu, 1987. "An Intertemporal General Equilibrium Asset Pricing Model: The Case of Diffusion Information," Econometrica, Econometric Society, vol. 55(1), pages 117-42, January.
  32. Harrison, J. Michael & Pliska, Stanley R., 1983. "A stochastic calculus model of continuous trading: Complete markets," Stochastic Processes and their Applications, Elsevier, vol. 15(3), pages 313-316, August.
  33. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
  34. Araujo,A. & Monteiro,P.K., 1989. "General equilibrium with infinitely many goods: The case of seperable utilities," Discussion Paper Serie A 249, University of Bonn, Germany.
  35. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
  36. Cvitanic, Jaksa & Wang, Hui, 2001. "On optimal terminal wealth under transaction costs," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 223-231, April.
  37. Bellamy, Nadine, 2001. "Wealth optimization in an incomplete market driven by a jump-diffusion process," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 259-287, April.
  38. Lakner, Peter, 1995. "Utility maximization with partial information," Stochastic Processes and their Applications, Elsevier, vol. 56(2), pages 247-273, April.
  39. Duffie, J Darrell & Huang, Chi-fu, 1985. "Implementing Arrow-Debreu Equilibria by Continuous Trading of Few Long-lived Securities," Econometrica, Econometric Society, vol. 53(6), pages 1337-56, November.
  40. Knut K. Aase, 1992. "Dynamic Equilibrium and the Structure of Premiums in a Reinsurance Market," The Geneva Risk and Insurance Review, Palgrave Macmillan, vol. 17(2), pages 93-136, December.
  41. Cox, John C. & Huang, Chi-fu, 1991. "A variational problem arising in financial economics," Journal of Mathematical Economics, Elsevier, vol. 20(5), pages 465-487.
  42. Kabanov, Yu. M. & Stricker, Ch., 2001. "The Harrison-Pliska arbitrage pricing theorem under transaction costs," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 185-196, April.
  43. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
  44. Duffie, Darrell & Huang, Chi-fu, 1986. "Multiperiod security markets with differential information : Martingales and resolution times," Journal of Mathematical Economics, Elsevier, vol. 15(3), pages 283-303, June.
  45. Araujo, A. & Monteiro, P. K., 1989. "Equilibrium without uniform conditions," Journal of Economic Theory, Elsevier, vol. 48(2), pages 416-427, August.
  46. Jouini, Elyès & Kallal, Hedi, 1999. "Viability and equilibrium in securities markets with frictions," Economics Papers from University Paris Dauphine 123456789/5603, Paris Dauphine University.
  47. Jouini, Elyès & Carassus, Laurence, 1998. "Investment and arbitrage opportunities with short sales constraints," Economics Papers from University Paris Dauphine 123456789/5604, Paris Dauphine University.
  48. Bewley, Truman F., 1972. "Existence of equilibria in economies with infinitely many commodities," Journal of Economic Theory, Elsevier, vol. 4(3), pages 514-540, June.
  49. Chiarolla, Maria B. & Haussmann, Ulrich G., 2001. "Equilibrium in a stochastic model with consumption, wages and investment," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 311-346, April.
  50. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-57, August.
  51. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
  52. Jouini, Elyès, 1997. "Market Imperfections , Equilibrium and Arbitrage," Economics Papers from University Paris Dauphine 123456789/1047, Paris Dauphine University.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. M. Dempster & I. Evstigneev & M. Taksar, 2006. "Asset Pricing and Hedging in Financial Markets with Transaction Costs: An Approach Based on the Von Neumann–Gale Model," Annals of Finance, Springer, vol. 2(4), pages 327-355, October.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:35:y:2001:i:2:p:167-183. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.