IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v71y2018icp363-371.html
   My bibliography  Save this article

Multi-objective game theory model and fuzzy programing approach for sustainable watershed management

Author

Listed:
  • Moradi, Sohrab
  • Limaei, Soleiman Mohammadi

Abstract

This study was carried out with the aim of feasibility evaluation of the application of multi-objective game theory and fuzzy programing approaches for settling balance between economic development and environmental impact as well as to facilitate the respective decision-makings in Zemkan basin, west of Iran. The bi-objectives of multi-objective game theory and fuzzy programing approaches are minimizing the destructive effects on the environment (less erosion and sediments) and maximizing the economical incomes resulted from different land uses (more net present value). Satellite images were used for recognition of different land uses and the areas of these land use. In this study, the environmentalists and Zemkan basin users were selected as environmental and economical players, respectively. The results reveal that Nash bargaining solution, which is the result of the multi-objective game theory model, differs from Pareto optimalities, obtained through the classical multi-objective model. Nash bargaining solution offered more satisfactory solutions based on decision-makers’ priorities. In addition, the overall results showed that the results of fuzzy programming approach were very close to the results of the multi-objective game theory model. Therefore, in both methods, the decision variables of semi-closed forest, open forest, non-irrigated agricultural lands and barren rocky lands were eliminated and the ones of rural areas, urban areas, and water body remained unchanged. The innovation of multi-objective game theory and fuzzy programing approaches, which can be understood and interpreted well by decision makers, is setting a kind of balance between economic and environmental concerns in watershed management. The results also show that multi-objective game theory and fuzzy programing approaches can be applied to many other issues concerning the environmental management. The upcoming researches can concentrate on developing a third objective like social concerns and accordingly tri-objective games would be applied instead of bi-objective ones.

Suggested Citation

  • Moradi, Sohrab & Limaei, Soleiman Mohammadi, 2018. "Multi-objective game theory model and fuzzy programing approach for sustainable watershed management," Land Use Policy, Elsevier, vol. 71(C), pages 363-371.
  • Handle: RePEc:eee:lauspo:v:71:y:2018:i:c:p:363-371
    DOI: 10.1016/j.landusepol.2017.12.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837716314454
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2017.12.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Parrachino, Irene & Zara, Stefano & Patrone, Fioravante, 2006. "Cooperative game theory and its application to natural, environmental, and water resource issues : 1. basic theory," Policy Research Working Paper Series 4072, The World Bank.
    2. Limaei, Soleiman Mohammadi, 2010. "Mixed strategy game theory, application in forest industry," Forest Policy and Economics, Elsevier, vol. 12(7), pages 527-531, September.
    3. Parrachino, Irene & Dinar, Ariel & Patrone, Fioravante, 2006. "Cooperative game theory and its application to natural, environmental, and water resource issues : 3. application to water resources," Policy Research Working Paper Series 4074, The World Bank.
    4. Chang, Ni-Bin & Wang, S.F., 1997. "A fuzzy goal programming approach for the optimal planning of metropolitan solid waste management systems," European Journal of Operational Research, Elsevier, vol. 99(2), pages 303-321, June.
    5. Britz, Volker & Herings, P. Jean-Jacques & Predtetchinski, Arkadi, 2010. "Non-cooperative support for the asymmetric Nash bargaining solution," Journal of Economic Theory, Elsevier, vol. 145(5), pages 1951-1967, September.
    6. Martin J. Osborne & Ariel Rubinstein, 1994. "A Course in Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262650401, December.
    7. Julien, Benoit, 1994. "Water quality management with imprecise information," European Journal of Operational Research, Elsevier, vol. 76(1), pages 15-27, July.
    8. Zara, Stefano & Dinar, Ariel & Patrone, Fioravante, 2006. "Cooperative game theory and its application to natural, environmental, and water resource issues : 2. application to natural and environmental resources," Policy Research Working Paper Series 4073, The World Bank.
    9. Shields, Deborah J. & Tolwinski, Boleslaw & Kent, Brian M., 1999. "Models for conflict resolution in ecosystem management," Socio-Economic Planning Sciences, Elsevier, vol. 33(1), pages 61-84, March.
    10. Roger B. Myerson, 1992. "On the Value of Game Theory in Social Science," Rationality and Society, , vol. 4(1), pages 62-73, January.
    11. Gupta, A. P. & Harboe, R. & Tabucanon, M. T., 2000. "Fuzzy multiple-criteria decision making for crop area planning in Narmada river basin," Agricultural Systems, Elsevier, vol. 63(1), pages 1-18, January.
    12. Colin F. Camerer, 1997. "Progress in Behavioral Game Theory," Journal of Economic Perspectives, American Economic Association, vol. 11(4), pages 167-188, Fall.
    13. Carraro, Carlo & Marchiori, Carmen & Sgobbi, Alessandra, 2007. "Negotiating on water: insights from non-cooperative bargaining theory," Environment and Development Economics, Cambridge University Press, vol. 12(2), pages 329-349, April.
    14. Shahi, Chander & Kant, Shashi, 2007. "An evolutionary game-theoretic approach to the strategies of community members under Joint Forest Management regime," Forest Policy and Economics, Elsevier, vol. 9(7), pages 763-775, April.
    15. Chang, Ni-Bin & Wen, C.G. & Chen, Y.L., 1997. "A fuzzy multi-objective programming approach for optimal management of the reservoir watershed," European Journal of Operational Research, Elsevier, vol. 99(2), pages 289-302, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pournabi, Nima & Janatrostami, Somaye & Ashrafzadeh, Afshin & Mohammadi, Kourosh, 2021. "Resolution of Internal conflicts for conservation of the Hour Al-Azim wetland using AHP-SWOT and game theory approach," Land Use Policy, Elsevier, vol. 107(C).
    2. Tiangui Lv & Hualin Xie & Hua Lu & Xinmin Zhang & Lei Yang, 2019. "A Game Theory-Based Approach for Exploring Water Resource Exploitation Behavior in the Poyang Lake Basin, China," Sustainability, MDPI, vol. 11(22), pages 1-14, November.
    3. Ahmad KhazaiPoul & Ali Moridi & Jafar Yazdi, 2019. "Multi-Objective Optimization for Interactive Reservoir-Irrigation Planning Considering Environmental Issues by Using Parallel Processes Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(15), pages 5137-5151, December.
    4. Arjomandi, Amin & Mortazavi, Seyed Abolghasem & Khalilian, Sadegh & Garizi, Arash Zare, 2021. "Optimal land-use allocation using MCDM and SWAT for the Hablehroud Watershed, Iran," Land Use Policy, Elsevier, vol. 100(C).
    5. Ali Zarei & Sayed-Farhad Mousavi & Madjid Eshaghi Gordji & Hojat Karami, 2019. "Optimal Reservoir Operation Using Bat and Particle Swarm Algorithm and Game Theory Based on Optimal Water Allocation among Consumers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3071-3093, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hurt, Wesley & Osório, António (António Miguel), 2014. "A Sequential Allocation Problem: The Asymptotic Distribution of Resources," Working Papers 2072/237596, Universitat Rovira i Virgili, Department of Economics.
    2. Osório, António (António Miguel), 2016. "A Sequential Allocation Problem: The Asymptotic Distribution of Resources," Working Papers 2072/266574, Universitat Rovira i Virgili, Department of Economics.
    3. Ershad Oftadeh & Mojtaba Shourian & Bahram Saghafian, 2017. "An Ultimatum Game Theory Based Approach for Basin Scale Water Allocation Conflict Resolution," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(13), pages 4293-4308, October.
    4. Álvarez, Xana & Gómez-Rúa, María & Vidal-Puga, Juan, 2019. "Risk prevention of land flood: A cooperative game theory approach," MPRA Paper 91515, University Library of Munich, Germany.
    5. Alvarez, Isabelle & Zaleski, Laetitia & Briot, Jean-Pierre & de A. Irving, Marta, 2023. "Collective management of environmental commons with multiple usages: A guaranteed viability approach," Ecological Modelling, Elsevier, vol. 475(C).
    6. van den Brink, René & He, Simin & Huang, Jia-Ping, 2018. "Polluted river problems and games with a permission structure," Games and Economic Behavior, Elsevier, vol. 108(C), pages 182-205.
    7. Stefano Moretti & Fioravante Patrone & Ariel Dinar & Safwat Abdel-Dayem, 2016. "Sharing the Costs of Complex Water Projects: Application to the West Delta Water Conservation and Irrigation Rehabilitation Project, Egypt," Games, MDPI, vol. 7(3), pages 1-23, July.
    8. Hadi Tarebari & Amir Hossein Javid & Seyyed Ahmad Mirbagheri & Hedayat Fahmi, 2018. "Multi-Objective Surface Water Resource Management Considering Conflict Resolution and Utility Function Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4487-4509, November.
    9. Robert Slonim, 2005. "Competing Against Experienced and Inexperienced Players," Experimental Economics, Springer;Economic Science Association, vol. 8(1), pages 55-75, April.
    10. Aouni, Belaid & Kettani, Ossama, 2001. "Goal programming model: A glorious history and a promising future," European Journal of Operational Research, Elsevier, vol. 133(2), pages 225-231, January.
    11. Prawat Sahakij & Steven Gabriel & Mark Ramirez & Chris Peot, 2011. "Multi-objective Optimization Models for Distributing Biosolids to Reuse Fields: A Case Study for the Blue Plains Wastewater Treatment Plant," Networks and Spatial Economics, Springer, vol. 11(1), pages 1-22, March.
    12. Masanori Mitsutsune & Takanori Adachi, 2014. "Estimating noncooperative and cooperative models of bargaining: an empirical comparison," Empirical Economics, Springer, vol. 47(2), pages 669-693, September.
    13. M. Fiestras-Janeiro & Ignacio García-Jurado & Manuel Mosquera, 2011. "Cooperative games and cost allocation problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 1-22, July.
    14. Li, Y.P. & Huang, G.H. & Wang, G.Q. & Huang, Y.F., 2009. "FSWM: A hybrid fuzzy-stochastic water-management model for agricultural sustainability under uncertainty," Agricultural Water Management, Elsevier, vol. 96(12), pages 1807-1818, December.
    15. António Osório, 2017. "A Sequential Allocation Problem: The Asymptotic Distribution of Resources," Group Decision and Negotiation, Springer, vol. 26(2), pages 357-377, March.
    16. Grundel, S. & Borm, P.E.M. & Hamers, H.J.M., 2011. "A Compromise Stable Extension of Bankruptcy Games : Multipurpose Resource Allocation," Other publications TiSEM b1926d6b-22f4-4f28-84a2-9, Tilburg University, School of Economics and Management.
    17. Dinar, Ariel & Farolfi, Stefano & Patrone, Fioravante & Rowntree, Kate, 2006. "TO NEGOTIATE OR TO GAME THEORIZE: Negotiation vs. Game Theory Outcomes for Water Allocation Problems in the Kat Basin, South Africa," Working Papers 60888, University of Pretoria, Department of Agricultural Economics, Extension and Rural Development.
    18. Erik Ansink & Hans-Peter Weikard, 2012. "Sequential sharing rules for river sharing problems," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 38(2), pages 187-210, February.
    19. Mehran Homayounfar & Sai Lai & Mehdi Zommorodian & Amin Oroji & Arman Ganji & Sara Kaviani, 2015. "Developing a Non-Discrete Dynamic Game Model and Corresponding Monthly Collocation Solution Considering Variability in Reservoir Inflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2599-2618, June.
    20. Osorio, Antonio, 2014. "A Sequential Allocation Problem: The Asymptotic Distribution of Resources," MPRA Paper 56690, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:71:y:2018:i:c:p:363-371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.