IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v96y2009i12p1807-1818.html
   My bibliography  Save this article

FSWM: A hybrid fuzzy-stochastic water-management model for agricultural sustainability under uncertainty

Author

Listed:
  • Li, Y.P.
  • Huang, G.H.
  • Wang, G.Q.
  • Huang, Y.F.

Abstract

A hybrid fuzzy-stochastic water-management (FSWM) model is developed for agricultural sustainability under uncertainty, based on advancement of a multistage fuzzy-stochastic quadratic programming (MFSQP) approach. In MFSQP, uncertainties presented in terms of fuzziness and randomness can be incorporated within a multilayer scenario tree, such that revised decisions are permitted in each time period based on the realized values of the uncertain events. Moreover, fuzzy quadratic terms are used in the objective function to minimize the variation of satisfaction degrees among the constraints; it allows an increased flexibility in controlling the system risk in the optimization process. Results of the case study indicate that useful solutions for the planning of agricultural water management have been obtained. In the FSWM model, a number of policies for agricultural water supply are conducted. The results obtained can help decision makers to identify desired water-allocation schemes for agricultural sustainability under uncertainty, particularly when limited water resources are available for multiple competing users.

Suggested Citation

  • Li, Y.P. & Huang, G.H. & Wang, G.Q. & Huang, Y.F., 2009. "FSWM: A hybrid fuzzy-stochastic water-management model for agricultural sustainability under uncertainty," Agricultural Water Management, Elsevier, vol. 96(12), pages 1807-1818, December.
  • Handle: RePEc:eee:agiwat:v:96:y:2009:i:12:p:1807-1818
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(09)00215-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maqsood, Imran & Huang, Guo H. & Scott Yeomans, Julian, 2005. "An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 208-225, November.
    2. Fortes, P.S. & Platonov, A.E. & Pereira, L.S., 2005. "GISAREG--A GIS based irrigation scheduling simulation model to support improved water use," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 159-179, August.
    3. Azaiez, M. N., 2002. "A model for conjunctive use of ground and surface water with opportunity costs," European Journal of Operational Research, Elsevier, vol. 143(3), pages 611-624, December.
    4. Laxmi Sethi & D. Kumar & Sudhindra Panda & Bimal Mal, 2002. "Optimal Crop Planning and Conjunctive Use of Water Resources in a Coastal River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 16(2), pages 145-169, April.
    5. Chang, Ni-Bin & Wang, S.F., 1997. "A fuzzy goal programming approach for the optimal planning of metropolitan solid waste management systems," European Journal of Operational Research, Elsevier, vol. 99(2), pages 303-321, June.
    6. Gupta, A. P. & Harboe, R. & Tabucanon, M. T., 2000. "Fuzzy multiple-criteria decision making for crop area planning in Narmada river basin," Agricultural Systems, Elsevier, vol. 63(1), pages 1-18, January.
    7. Wagner, Janet M. & Shamir, Uri & Marks, David H., 1994. "Containing groundwater contamination: Planning models using stochastic programming with recourse," European Journal of Operational Research, Elsevier, vol. 77(1), pages 1-26, August.
    8. Ammar, E.E., 2009. "On fuzzy random multiobjective quadratic programming," European Journal of Operational Research, Elsevier, vol. 193(2), pages 329-341, March.
    9. Victoria, F.B. & Filho, J.S. Viegas & Pereira, L.S. & Teixeira, J.L. & Lanna, A.E., 2005. "Multi-scale modeling for water resources planning and management in rural basins," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 4-20, August.
    10. Pereira, Luis Santos & Oweis, Theib & Zairi, Abdelaziz, 2002. "Irrigation management under water scarcity," Agricultural Water Management, Elsevier, vol. 57(3), pages 175-206, December.
    11. Paudyal, G. N. & Das Gupta, A., 1990. "A nonlinear chance constrained model for irrigation planning," Agricultural Water Management, Elsevier, vol. 18(2), pages 87-100, July.
    12. Huang, G. H., 1998. "A hybrid inexact-stochastic water management model," European Journal of Operational Research, Elsevier, vol. 107(1), pages 137-158, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, W. & Li, Y.P. & Li, C.H. & Huang, G.H., 2010. "An inexact two-stage water management model for planning agricultural irrigation under uncertainty," Agricultural Water Management, Elsevier, vol. 97(11), pages 1905-1914, November.
    2. C. Li & L. Zhang, 2015. "An Inexact Two-Stage Allocation Model for Water Resources Management Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1823-1841, April.
    3. Niu, G. & Li, Y.P. & Huang, G.H. & Liu, J. & Fan, Y.R., 2016. "Crop planning and water resource allocation for sustainable development of an irrigation region in China under multiple uncertainties," Agricultural Water Management, Elsevier, vol. 166(C), pages 53-69.
    4. Huang, Y. & Li, Y.P. & Chen, X. & Ma, Y.G., 2012. "Optimization of the irrigation water resources for agricultural sustainability in Tarim River Basin, China," Agricultural Water Management, Elsevier, vol. 107(C), pages 74-85.
    5. Mahdi Zarghami, 2010. "Urban Water Management Using Fuzzy-Probabilistic Multi-Objective Programming with Dynamic Efficiency," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4491-4504, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Feng & Huang, Gordon H. & Chen, Guo-Xian & Guo, Huai-Cheng, 2009. "Enhanced-interval linear programming," European Journal of Operational Research, Elsevier, vol. 199(2), pages 323-333, December.
    2. Li, Y.P. & Huang, G.H. & Nie, S.L. & Chen, X., 2011. "A robust modeling approach for regional water management under multiple uncertainties," Agricultural Water Management, Elsevier, vol. 98(10), pages 1577-1588, August.
    3. Li, Y.P. & Huang, G.H. & Yang, Z.F. & Nie, S.L., 2008. "IFMP: Interval-fuzzy multistage programming for water resources management under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 52(5), pages 800-812.
    4. Wang, S. & Huang, G.H., 2014. "An integrated approach for water resources decision making under interactive and compound uncertainties," Omega, Elsevier, vol. 44(C), pages 32-40.
    5. Chen, Shu & Shao, Dongguo & Tan, Xuezhi & Gu, Wenquan & Lei, Caixiu, 2017. "An interval multistage classified model for regional inter- and intra-seasonal water management under uncertain and nonstationary condition," Agricultural Water Management, Elsevier, vol. 191(C), pages 98-112.
    6. Min Zhou & Shasha Lu & Shukui Tan & Danping Yan & Guoliang Ou & Dianfeng Liu & Xiang Luo & Yanan Li & Lu Zhang & Zuo Zhang & Xiangbo Zhu, 2017. "A stochastic equilibrium chance-constrained programming model for municipal solid waste management of the City of Dalian, China," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(1), pages 199-218, January.
    7. Moradi, Sohrab & Limaei, Soleiman Mohammadi, 2018. "Multi-objective game theory model and fuzzy programing approach for sustainable watershed management," Land Use Policy, Elsevier, vol. 71(C), pages 363-371.
    8. Wang, S. & Huang, G.H., 2015. "A multi-level Taguchi-factorial two-stage stochastic programming approach for characterization of parameter uncertainties and their interactions: An application to water resources management," European Journal of Operational Research, Elsevier, vol. 240(2), pages 572-581.
    9. Xu, Y. & Huang, G.H. & Qin, X.S. & Cao, M.F., 2009. "SRCCP: A stochastic robust chance-constrained programming model for municipal solid waste management under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 53(6), pages 352-363.
    10. Li, Y.P. & Huang, G.H. & Zhang, N. & Nie, S.L., 2011. "An inexact-stochastic with recourse model for developing regional economic-ecological sustainability under uncertainty," Ecological Modelling, Elsevier, vol. 222(2), pages 370-379.
    11. Gaivoronski, Alexei & Sechi, Giovanni M. & Zuddas, Paola, 2012. "Cost/risk balanced management of scarce resources using stochastic programming," European Journal of Operational Research, Elsevier, vol. 216(1), pages 214-224.
    12. P. Guo & G. Huang & L. He & H. Zhu, 2009. "Interval-parameter Two-stage Stochastic Semi-infinite Programming: Application to Water Resources Management under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 1001-1023, March.
    13. Sun, Wei & Huang, Guo H. & Lv, Ying & Li, Gongchen, 2013. "Inexact joint-probabilistic chance-constrained programming with left-hand-side randomness: An application to solid waste management," European Journal of Operational Research, Elsevier, vol. 228(1), pages 217-225.
    14. Chenglong Zhang & Qiong Yue & Ping Guo, 2019. "A Nonlinear Inexact Two-Stage Management Model for Agricultural Water Allocation under Uncertainty Based on the Heihe River Water Diversion Plan," IJERPH, MDPI, vol. 16(11), pages 1-18, May.
    15. Victoria, F.B. & Filho, J.S. Viegas & Pereira, L.S. & Teixeira, J.L. & Lanna, A.E., 2005. "Multi-scale modeling for water resources planning and management in rural basins," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 4-20, August.
    16. Liu, Y. & Huang, G.H. & Cai, Y.P. & Cheng, G.H. & Niu, Y.T. & An, K., 2009. "Development of an inexact optimization model for coupled coal and power management in North China," Energy Policy, Elsevier, vol. 37(11), pages 4345-4363, November.
    17. Zhang, Xiaodong & Huang, Guo H. & Nie, Xianghui, 2009. "Optimal decision schemes for agricultural water quality management planning with imprecise objective," Agricultural Water Management, Elsevier, vol. 96(12), pages 1723-1731, December.
    18. Horst, M.G. & Shamutalov, S.S. & Pereira, L.S. & Goncalves, J.M., 2005. "Field assessment of the water saving potential with furrow irrigation in Fergana, Aral Sea basin," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 210-231, August.
    19. Burrow, Andy & Newman, Alexandra, 2020. "Optimal design and operation of River Basin Storage," Omega, Elsevier, vol. 95(C).
    20. Pereira, L.S. & Paredes, P. & Sholpankulov, E.D. & Inchenkova, O.P. & Teodoro, P.R. & Horst, M.G., 2009. "Irrigation scheduling strategies for cotton to cope with water scarcity in the Fergana Valley, Central Asia," Agricultural Water Management, Elsevier, vol. 96(5), pages 723-735, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:96:y:2009:i:12:p:1807-1818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.