IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v70y2018icp521-534.html
   My bibliography  Save this article

Global arable land transfers embodied in Mainland China’s foreign trade

Author

Listed:
  • Han, Mengyao
  • Chen, Guoqian

Abstract

The process of globalization increases spatial separation of basic resources in terms of demand and supply across multiple countries/regions, thereby leading to the shift of environmental pressure mainly triggered by population expansion and economic growth via global supply chains. To comprehensively analyze Mainland China’s arable land use issues, the present work illustrates its arable land transfers embodied in foreign trade based on a multi-regional input-output analysis. In total, the trade volume of Mainland China’s arable land transfers is revealed in magnitude up to 70% of its direct arable land area. With a distinction between production- and consumption-based transfers, Mainland China exports 27.18Mha (million hectares) of embodied arable land to other economies, while it imports 48.35Mha of embodied arable land, making it a large force for agricultural industry development and arable land utilization in regions such as ASEAN, EU27, and Africa. The relations, pressures, and structures of embodied arable land related to Mainland China are clearly depicted from the global perspective. With detailed embodied arable land transfer profiles, it is practical to comprehensively analyze Mainland China’s arable land utilization via supply chains from the global perspective for essential policy implications in reasonably reshaping Mainland China’s economic structures and trade patterns.

Suggested Citation

  • Han, Mengyao & Chen, Guoqian, 2018. "Global arable land transfers embodied in Mainland China’s foreign trade," Land Use Policy, Elsevier, vol. 70(C), pages 521-534.
  • Handle: RePEc:eee:lauspo:v:70:y:2018:i:c:p:521-534
    DOI: 10.1016/j.landusepol.2017.07.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837717302752
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2017.07.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Xin & Imura, Hidefumi, 2011. "How does consumer behavior influence regional ecological footprints? An empirical analysis for Chinese regions based on the multi-region input–output model," Ecological Economics, Elsevier, vol. 71(C), pages 171-179.
    2. Hubacek, Klaus & Sun, Laixiang, 2001. "A scenario analysis of China's land use and land cover change: incorporating biophysical information into input-output modeling," Structural Change and Economic Dynamics, Elsevier, vol. 12(4), pages 367-397, December.
    3. Harry Wilting & Kees Vringer, 2009. "CARBON AND LAND USE ACCOUNTING FROM A PRODUCER'S AND A cONSUMER'S PERSPECTIVE - AN EMPIRICAL EXAMINATION COVERING THE WORLD," Economic Systems Research, Taylor & Francis Journals, vol. 21(3), pages 291-310.
    4. Huang, Hsin & von Lampe, Martin & van Tongeren, Frank, 2011. "Climate change and trade in agriculture," Food Policy, Elsevier, vol. 36(S1), pages 9-13.
    5. Costanza, Robert & Herendeen, Robert A., 1984. "Embodied energy and economic value in the United States economy: 1963, 1967 and 1972," Resources and Energy, Elsevier, vol. 6(2), pages 129-163, June.
    6. Ricardo, David, 1821. "On the Principles of Political Economy and Taxation," History of Economic Thought Books, McMaster University Archive for the History of Economic Thought, edition 3, number ricardo1821.
    7. Hubacek, Klaus & Giljum, Stefan, 2003. "Applying physical input-output analysis to estimate land appropriation (ecological footprints) of international trade activities," Ecological Economics, Elsevier, vol. 44(1), pages 137-151, February.
    8. World Bank, 2009. "Geography in Motion: World Development Report 2009 (excerpt)," Transnational Corporations Review, Ottawa United Learning Academy, vol. 1(3), pages 40-46, September.
    9. Fan, Ze-Meng & Li, Jing & Yue, Tian-Xiang, 2013. "Land-cover changes of biome transition zones in Loess Plateau of China," Ecological Modelling, Elsevier, vol. 252(C), pages 129-140.
    10. Lenzen, Manfred & Moran, Daniel & Bhaduri, Anik & Kanemoto, Keiichiro & Bekchanov, Maksud & Geschke, Arne & Foran, Barney, 2013. "International trade of scarce water," Ecological Economics, Elsevier, vol. 94(C), pages 78-85.
    11. Wurtenberger, Laura & Koellner, Thomas & Binder, Claudia R., 2006. "Virtual land use and agricultural trade: Estimating environmental and socio-economic impacts," Ecological Economics, Elsevier, vol. 57(4), pages 679-697, June.
    12. Kastner, Thomas & Kastner, Michael & Nonhebel, Sanderine, 2011. "Tracing distant environmental impacts of agricultural products from a consumer perspective," Ecological Economics, Elsevier, vol. 70(6), pages 1032-1040, April.
    13. Schneider, Uwe A. & Havlík, Petr & Schmid, Erwin & Valin, Hugo & Mosnier, Aline & Obersteiner, Michael & Böttcher, Hannes & Skalský, Rastislav & Balkovic, Juraj & Sauer, Timm & Fritz, Steffen, 2011. "Impacts of population growth, economic development, and technical change on global food production and consumption," Agricultural Systems, Elsevier, vol. 104(2), pages 204-215, February.
    14. G. Fischer & Y. Chen & L. Sun, 1998. "The Balance of Cultivated Land in China during 1988-1995," Working Papers ir98047, International Institute for Applied Systems Analysis.
    15. Coley, David & Howard, Mark & Winter, Michael, 2009. "Local food, food miles and carbon emissions: A comparison of farm shop and mass distribution approaches," Food Policy, Elsevier, vol. 34(2), pages 150-155, April.
    16. Han, M.Y. & Chen, G.Q. & Mustafa, M.T. & Hayat, T. & Shao, Ling & Li, J.S. & Xia, X.H. & Ji, Xi, 2015. "Embodied water for urban economy: A three-scale input–output analysis for Beijing 2010," Ecological Modelling, Elsevier, vol. 318(C), pages 19-25.
    17. Li, J.S. & Chen, G.Q. & Lai, T.M. & Ahmad, B. & Chen, Z.M. & Shao, L. & Ji, Xi, 2013. "Embodied greenhouse gas emission by Macao," Energy Policy, Elsevier, vol. 59(C), pages 819-833.
    18. Wichelns, Dennis, 2001. "The role of `virtual water' in efforts to achieve food security and other national goals, with an example from Egypt," Agricultural Water Management, Elsevier, vol. 49(2), pages 131-151, July.
    19. Kissinger, Meidad & Rees, William E., 2009. "Footprints on the prairies: Degradation and sustainability of Canadian agricultural land in a globalizing world," Ecological Economics, Elsevier, vol. 68(8-9), pages 2309-2315, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Zhouying & Zhu, Qiaoling & Han, Mengyao, 2021. "Tele-connection of global crude oil network: Comparisons between direct trade and embodied flows," Energy, Elsevier, vol. 217(C).
    2. Tian, Xu & Bruckner, Martin & Geng, Yong & Bleischwitz, Raimund, 2019. "Trends and driving forces of China’s virtual land consumption and trade," Land Use Policy, Elsevier, vol. 89(C).
    3. Zaid Ashiq Khan & Mansoor Ahmed Koondhar & Noshaba Aziz & Uzair Ali & Liu Tianjun, 2020. "Revisiting the effects of relevant factors on Pakistan's agricultural products export," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 66(12), pages 527-541.
    4. Han, Mengyao & Xiong, Jiao & Yang, Yu, 2023. "Comparisons between direct and embodied natural gas networks: Topology, dependency and vulnerability," Energy, Elsevier, vol. 280(C).
    5. Han, M.Y. & Chen, G.Q. & Dunford, M., 2019. "Land use balance for urban economy: A multi-scale and multi-type perspective," Land Use Policy, Elsevier, vol. 83(C), pages 323-333.
    6. Li, Chaohui & Wu, Xudong & Chen, Guoqian & Han, Mengyao & Chen, Kuang & Yangzong, Ciren & Lo, Dan & Alsaedi, Ahmed & Hayat, Tasawar, 2021. "Pastureland use of China: Accounting variations from different input-output analyses," Land Use Policy, Elsevier, vol. 109(C).
    7. Wang, Pengfei & Li, Hongbo & Huang, Zhenbin, 2023. "The inter-provincial trade inequality in China: An assessment of the impact of changes in built-up land and carbon storage," Ecological Economics, Elsevier, vol. 206(C).
    8. Wu, X.D. & Guo, J.L. & Han, M.Y. & Chen, G.Q., 2018. "An overview of arable land use for the world economy: From source to sink via the global supply chain," Land Use Policy, Elsevier, vol. 76(C), pages 201-214.
    9. Mengyao Han & Shuchang Li, 2021. "Transfer Patterns and Drivers of Embodied Agricultural Land within China: Based on Multi-Regional Decomposition Analysis," Land, MDPI, vol. 10(2), pages 1-16, February.
    10. Yang, Zhiyuan & Zhu, Yuemei & Zhang, Xiaoli & Liao, Qin & Fu, Hao & Cheng, Qingyue & Chen, Zongkui & Sun, Yongjian & Ma, Jun & Zhang, Jinyue & Li, Liangyu & Li, Na, 2023. "Unmanned aerial vehicle direct seeding or integrated mechanical transplanting, which will be the next step for mechanized rice production in China? —A comparison based on energy use efficiency and eco," Energy, Elsevier, vol. 273(C).
    11. Franco-Solís, Alberto & Montanía, Claudia V., 2021. "Dynamics of deforestation worldwide: A structural decomposition analysis of agricultural land use in South America," Land Use Policy, Elsevier, vol. 109(C).
    12. Cheng, Mengyao & Wu, Jialu & Li, Chaohui & Jia, Yuanxin & Xia, Xiaohua, 2023. "Tele-connection of global agricultural land network: Incorporating complex network approach with multi-regional input-output analysis," Land Use Policy, Elsevier, vol. 125(C).
    13. Guo, Shan & Jiang, Li & Shen, Geoffrey Q.P., 2019. "Embodied pasture land use change in China 2000-2015: From the perspective of globalization," Land Use Policy, Elsevier, vol. 82(C), pages 476-485.
    14. Ji, Xi & Su, Pinyi & Liu, Yifang & Wu, Guowei & Wu, Xudong, 2023. "Mutual complementarity of arable land use in the Sino-Africa trade: Evidence from the global supply chain," Land Use Policy, Elsevier, vol. 128(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, M.Y. & Chen, G.Q. & Dunford, M., 2019. "Land use balance for urban economy: A multi-scale and multi-type perspective," Land Use Policy, Elsevier, vol. 83(C), pages 323-333.
    2. Henders, Sabine & Ostwald, Madelene, 2014. "Accounting methods for international land-related leakage and distant deforestation drivers," Ecological Economics, Elsevier, vol. 99(C), pages 21-28.
    3. Bruckner, Martin & Fischer, Günther & Tramberend, Sylvia & Giljum, Stefan, 2015. "Measuring telecouplings in the global land system: A review and comparative evaluation of land footprint accounting methods," Ecological Economics, Elsevier, vol. 114(C), pages 11-21.
    4. Kissinger, Meidad & Rees, William E., 2010. "An interregional ecological approach for modelling sustainability in a globalizing world—Reviewing existing approaches and emerging directions," Ecological Modelling, Elsevier, vol. 221(21), pages 2615-2623.
    5. Kissinger, Meidad, 2012. "International trade related food miles – The case of Canada," Food Policy, Elsevier, vol. 37(2), pages 171-178.
    6. Mengyao Han & Shuchang Li, 2021. "Transfer Patterns and Drivers of Embodied Agricultural Land within China: Based on Multi-Regional Decomposition Analysis," Land, MDPI, vol. 10(2), pages 1-16, February.
    7. Kan, Siyi & Chen, Bin & Han, Mengyao & Hayat, Tasawar & Alsulami, Hamed & Chen, Guoqian, 2021. "China’s forest land use change in the globalized world economy: Foreign trade and unequal household consumption," Land Use Policy, Elsevier, vol. 103(C).
    8. Chao Bao & Mutian Xu & Siao Sun, 2019. "China’s Land Uses in the Multi-Region Input–Output Framework," IJERPH, MDPI, vol. 16(16), pages 1-17, August.
    9. Guo, Shan & Wang, Yao & Shen, Geoffrey Q.P. & Zhang, Bo & Wang, Hao, 2020. "Virtual built-up land transfers embodied in China’s interregional trade," Land Use Policy, Elsevier, vol. 94(C).
    10. Xiaolin Chen & Xiaojie Liu & Litao Liu & Yali Zhang & Jinhua Guo & Jing Huang & Meijun Zhou & Yang Zhao & Liang Wu & Lun Yang & Fei Lun, 2018. "Domestic Wheat Trade and Its Associated Virtual Cropland Flow in China, 2010–2015," Sustainability, MDPI, vol. 10(5), pages 1-15, May.
    11. Meina Zhou & Junying Wang & Hao Ji, 2023. "Virtual Land and Water Flows and Driving Factors Related to Livestock Products Trade in China," Land, MDPI, vol. 12(8), pages 1-20, July.
    12. Wu, X.D. & Guo, J.L. & Han, M.Y. & Chen, G.Q., 2018. "An overview of arable land use for the world economy: From source to sink via the global supply chain," Land Use Policy, Elsevier, vol. 76(C), pages 201-214.
    13. Kastner, Thomas & Kastner, Michael & Nonhebel, Sanderine, 2011. "Tracing distant environmental impacts of agricultural products from a consumer perspective," Ecological Economics, Elsevier, vol. 70(6), pages 1032-1040, April.
    14. Zhong, Zhangqi & Jiang, Lei & Zhou, Peng, 2018. "Transnational transfer of carbon emissions embodied in trade: Characteristics and determinants from a spatial perspective," Energy, Elsevier, vol. 147(C), pages 858-875.
    15. Panzone, Luca A. & Wossink, Ada & Southerton, Dale, 2013. "The design of an environmental index of sustainable food consumption: A pilot study using supermarket data," Ecological Economics, Elsevier, vol. 94(C), pages 44-55.
    16. Wurtenberger, Laura & Koellner, Thomas & Binder, Claudia R., 2006. "Virtual land use and agricultural trade: Estimating environmental and socio-economic impacts," Ecological Economics, Elsevier, vol. 57(4), pages 679-697, June.
    17. Hao, Yan & Zhang, Menghui & Zhang, Yan & Fu, Chenling & Lu, Zhongming, 2018. "Multi-scale analysis of the energy metabolic processes in the Beijing–Tianjin–Hebei (Jing-Jin-Ji) urban agglomeration," Ecological Modelling, Elsevier, vol. 369(C), pages 66-76.
    18. Hanspeter Wieland & Stefan Giljum & Nina Eisenmenger & Dominik Wiedenhofer & Martin Bruckner & Anke Schaffartzik & Anne Owen, 2020. "Supply versus use designs of environmental extensions in input–output analysis: Conceptual and empirical implications for the case of energy," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 548-563, June.
    19. Candau, Fabien & Regnacq, Charles & Schlick, Julie, 2022. "Climate change, comparative advantage and the water capability to produce agricultural goods," World Development, Elsevier, vol. 158(C).
    20. Li, J.S. & Chen, G.Q. & Hayat, T. & Alsaedi, A., 2015. "Mercury emissions by Beijing׳s fossil energy consumption: Based on environmentally extended input–output analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1167-1175.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:70:y:2018:i:c:p:521-534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.