IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v107y2021ics026483772100185x.html
   My bibliography  Save this article

A farm-level ecological-economic approach of the inclusion of pollination services in arable crop farms

Author

Listed:
  • Kleftodimos, Georgios
  • Gallai, Nicola
  • Rozakis, Stelios
  • Képhaliacos, Charilaos

Abstract

Modern agricultural systems use both managed and wild bees in order to secure the provision of pollination services. However, the decline of both bee species due to the increased use of pesticides raises concerns for the supply of pollination services in agriculture. Because European policies seem ineffective in safeguarding bees as they fail to address farmers’ socio-economic issues, farmers’ adoption rate of friendlier practices by pollinators remains limited. This study uses a farm-level ecological-economic model to explore the potential impacts of changing policy intervention on the provision of pollination services and on farmers’ incomes in two characteristic farms in Southwestern France. Moreover, it integrates the economic importance of behavioral interactions between managed and wild bees on crop production. The model assesses farmers’ adoption decisions about alternative practices under risk aversion through an optimization choice among several crops, practices (novel/conventional), variable inputs, and pollination activity. The results show that a knowledge of bees’ complementarity may facilitate farmers’ adoption decisions. Furthermore, they highlight that different levels of Agri-Environmental Schemes and penalties can be efficiently targeted to encourage the implementation of new farming practices in order to preserve pollination services and maintain economically viable farms.

Suggested Citation

  • Kleftodimos, Georgios & Gallai, Nicola & Rozakis, Stelios & Képhaliacos, Charilaos, 2021. "A farm-level ecological-economic approach of the inclusion of pollination services in arable crop farms," Land Use Policy, Elsevier, vol. 107(C).
  • Handle: RePEc:eee:lauspo:v:107:y:2021:i:c:s026483772100185x
    DOI: 10.1016/j.landusepol.2021.105462
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S026483772100185X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2021.105462?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2003. "Chapter 11 Technological change and the environment," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 1, chapter 11, pages 461-516, Elsevier.
    2. Douadia Bougherara & Xavier Gassmann & Laurent Piet & Arnaud Reynaud, 2017. "Corrigendum: Structural estimation of farmers’ risk and ambiguity preferences: a field experiment," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 44(5), pages 809-809.
    3. Kleczkowski, Adam & Ellis, Ciaran & Hanley, Nick & Goulson, David, 2017. "Pesticides and bees: Ecological-economic modelling of bee populations on farmland," Ecological Modelling, Elsevier, vol. 360(C), pages 53-62.
    4. Bauer, Dana Marie & Sue Wing, Ian, 2016. "The macroeconomic cost of catastrophic pollinator declines," Ecological Economics, Elsevier, vol. 126(C), pages 1-13.
    5. Keith O. Fuglie & Catherine A. Kascak, 2001. "Adoption and Diffusion of Natural-Resource-Conserving Agricultural Technology," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 23(2), pages 386-403.
    6. Charles A. Holt & Susan K. Laury, 2002. "Risk Aversion and Incentive Effects," American Economic Review, American Economic Association, vol. 92(5), pages 1644-1655, December.
    7. Mosnier, Claire & Ridier, Aude & Kphaliacos, Charilaos & Carpy-Goulard, Françoise, 2009. "Economic and environmental impact of the CAP mid-term review on arable crop farming in South-western France," Ecological Economics, Elsevier, vol. 68(5), pages 1408-1416, March.
    8. Petr Havlík & Patrick Veysset & Jean-Marie Boisson & Michel Lherm & Florence Jacquet, 2005. "Joint production under uncertainty and multifunctionality of agriculture: policy considerations and applied analysis," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 32(4), pages 489-515, December.
    9. G Lien & JB Hardaker, 2001. "Whole-farm planning under uncertainty: impacts of subsidy scheme and utility function on portfolio choice in Norwegian agriculture," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 28(1), pages 17-36, March.
    10. Chavas, Jean-Paul & Holt, Matthew T, 1996. "Economic Behavior under Uncertainty: A Joint Analysis of Risk Preferences and Technology," The Review of Economics and Statistics, MIT Press, vol. 78(2), pages 329-335, May.
    11. Guinde, Loic & Jacquet, Florence & Millet, Guy, 2008. "Impacts of the French bio-fuel policy on the French arable crop sub-sector," 2008 International Congress, August 26-29, 2008, Ghent, Belgium 43540, European Association of Agricultural Economists.
    12. Winfree, Rachael & Gross, Brian J. & Kremen, Claire, 2011. "Valuing pollination services to agriculture," Ecological Economics, Elsevier, vol. 71(C), pages 80-88.
    13. Nel, A.A. & Loubser, H.L., 2004. "The impact of crop rotation on profitability and production risk in the Eastern and North Western Free State," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 43(1), pages 1-11, March.
    14. Ridier, Aude & Ben El Ghali, Mohamed & Nguyen, G. & Kephaliacos, Charilaos, 2013. "The role of risk aversion and labor constraints in the adoption of low input practices supported by the CAP green payments in cash crop farms," Revue d'Etudes en Agriculture et Environnement, Editions NecPlus, vol. 2013(02), pages 195-219, June.
    15. Del Corso, Jean-Pierre & Kephaliacos, Charilaos & Plumecocq, Gaël, 2015. "Legitimizing farmers' new knowledge, learning and practices through communicative action: Application of an agro-environmental policy," Ecological Economics, Elsevier, vol. 117(C), pages 86-96.
    16. Knowler, Duncan & Bradshaw, Ben, 2007. "Farmers' adoption of conservation agriculture: A review and synthesis of recent research," Food Policy, Elsevier, vol. 32(1), pages 25-48, February.
    17. Centner, Terence J. & Brewer, Brady & Leal, Isaac, 2018. "Reducing damages from sulfoxaflor use through mitigation measures to increase the protection of pollinator species," Land Use Policy, Elsevier, vol. 75(C), pages 70-76.
    18. William J. Baumol, 1963. "An Expected Gain-Confidence Limit Criterion for Portfolio Selection," Management Science, INFORMS, vol. 10(1), pages 174-182, October.
    19. David Kleijn & Rachael Winfree & Ignasi Bartomeus & Luísa G Carvalheiro & Mickaël Henry & Rufus Isaacs & Alexandra-Maria Klein & Claire Kremen & Leithen K M'Gonigle & Romina Rader & Taylor H Ricketts , 2015. "Delivery of crop pollination services is an insufficient argument for wild pollinator conservation," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
    20. Ridier, Aude & Ben El Ghali, Mohamed & Nguyen, G. & Kephaliacos, Charilaos, 2013. "The role of risk aversion and labor constraints in the adoption of low input practices supported by the CAP green payments in cash crop farms," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 94(2).
    21. Randal R. Rucker & Walter N. Thurman & Michael Burgett, 2012. "Honey Bee Pollination Markets and the Internalization of Reciprocal Benefits," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(4), pages 956-977.
    22. Sunding, David & Zilberman, David, 2001. "The agricultural innovation process: Research and technology adoption in a changing agricultural sector," Handbook of Agricultural Economics, in: B. L. Gardner & G. C. Rausser (ed.), Handbook of Agricultural Economics, edition 1, volume 1, chapter 4, pages 207-261, Elsevier.
    23. Ben A. Woodcock & Nicholas J. B. Isaac & James M. Bullock & David B. Roy & David G. Garthwaite & Andrew Crowe & Richard F. Pywell, 2016. "Impacts of neonicotinoid use on long-term population changes in wild bees in England," Nature Communications, Nature, vol. 7(1), pages 1-8, November.
    24. Petr Havlík & Patrick Veysset & Jean-Marie Boisson & Michel M. Lherm & Florence F. Jacquet, 2005. "Joint production under uncertainty and multifunctionality of agriculture : policy considerations and applied analysis [[Production jointe sous incertitude et multifonctionnalité : considérations po," Post-Print hal-02680361, HAL.
    25. Maj Rundlöf & Georg K. S. Andersson & Riccardo Bommarco & Ingemar Fries & Veronica Hederström & Lina Herbertsson & Ove Jonsson & Björn K. Klatt & Thorsten R. Pedersen & Johanna Yourstone & Henrik G. S, 2015. "Seed coating with a neonicotinoid insecticide negatively affects wild bees," Nature, Nature, vol. 521(7550), pages 77-80, May.
    26. Douadia Bougherara & Xavier Gassmann & Laurent Piet & Arnaud Reynaud, 2017. "Structural estimation of farmers’ risk and ambiguity preferences: a field experiment," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 44(5), pages 782-808.
    27. Falconer, Katherine & Hodge, Ian, 2001. "Pesticide taxation and multi-objective policy-making: farm modelling to evaluate profit/environment trade-offs," Ecological Economics, Elsevier, vol. 36(2), pages 263-279, February.
    28. Iliopoulos, Constantine & Rozakis, Stelios, 2010. "Environmental cost-effectiveness of bio diesel production in Greece: Current policies and alternative scenarios," Energy Policy, Elsevier, vol. 38(2), pages 1067-1078, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. G. Kleftodimos & N. Gallai & Ch. Kephaliacos, 2021. "Ecological-economic modeling of pollination complexity and pesticide use in agricultural crops," Journal of Bioeconomics, Springer, vol. 23(3), pages 297-323, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ridier, Aude & Ben El Ghali, Mohamed & Nguyen, G. & Kephaliacos, Charilaos, 2013. "The role of risk aversion and labor constraints in the adoption of low input practices supported by the CAP green payments in cash crop farms," Revue d'Etudes en Agriculture et Environnement, Editions NecPlus, vol. 94(02), pages 195-219, June.
    2. Jacquet, Florence & Butault, Jean-Pierre & Guichard, Laurence, 2011. "An economic analysis of the possibility of reducing pesticides in French field crops," Ecological Economics, Elsevier, vol. 70(9), pages 1638-1648, July.
    3. Mohamed Ghali & Maha Ben Jaballah & Nejla Ben Arfa & Annie Sigwalt, 2022. "Analysis of factors that influence adoption of agroecological practices in viticulture," Review of Agricultural, Food and Environmental Studies, Springer, vol. 103(3), pages 179-209, September.
    4. Mohamed Ghali & Maha Ben Jaballah & Nejla Ben Arfa & Annie Sigwalt, 2022. "Analysis of factors that influence adoption of agroecological practices in viticulture," Post-Print hal-04071759, HAL.
    5. G. Kleftodimos & N. Gallai & Ch. Kephaliacos, 2021. "Ecological-economic modeling of pollination complexity and pesticide use in agricultural crops," Journal of Bioeconomics, Springer, vol. 23(3), pages 297-323, October.
    6. Marielle Brunette & Jonas Ngouhouo-Poufoun, 2022. "Are risk preferences consistent across elicitation procedures? A field experiment in Congo basin countries," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 47(1), pages 122-140, March.
    7. Marielle Brunette & Jonas Ngouhouo-Poufoun, 2021. "Are risk preferences consistent across elicitation procedures? A field experiment in Congo basin countries," Post-Print hal-03132834, HAL.
    8. Bamière, Laure & David, Maia & Vermont, Bruno, 2013. "Agri-environmental policies for biodiversity when the spatial pattern of the reserve matters," Ecological Economics, Elsevier, vol. 85(C), pages 97-104.
    9. Marc Baudry & Edouard Civel & Camille Tévenart, 2023. "Land allocation and the adoption of innovative practices in agriculture: a real option modelling of the underlying hidden costs," Working Papers hal-04159839, HAL.
    10. Balcombe, Kelvin & Fraser, Iain, 2024. "A Note on an Alternative Approach to Experimental Design of Lottery Prospects," MPRA Paper 119743, University Library of Munich, Germany.
    11. Mosnier, Claire & Ridier, Aude & Kphaliacos, Charilaos & Carpy-Goulard, Françoise, 2009. "Economic and environmental impact of the CAP mid-term review on arable crop farming in South-western France," Ecological Economics, Elsevier, vol. 68(5), pages 1408-1416, March.
    12. Géraldine Bocquého & Julien Jacob & Marielle Brunette, 2020. "Prospect theory in experiments : behaviour in loss domain and framing effects," Working Papers hal-02987294, HAL.
    13. Khataza, Robertson R.B. & Doole, Graeme J. & Kragt, Marit E. & Hailu, Atakelty, 2018. "Information acquisition, learning and the adoption of conservation agriculture in Malawi: A discrete-time duration analysis," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 299-307.
    14. Camille Tevenart & Marielle Brunette, 2021. "Role of Farmers’ Risk and Ambiguity Preferences on Fertilization Decisions: An Experiment," Sustainability, MDPI, vol. 13(17), pages 1-27, August.
    15. Barham, Bradford L. & Chavas, Jean-Paul & Fitz, Dylan & Salas, Vanessa Ríos & Schechter, Laura, 2014. "The roles of risk and ambiguity in technology adoption," Journal of Economic Behavior & Organization, Elsevier, vol. 97(C), pages 204-218.
    16. Havlik, Peter & Enjolras, Geoffroy & Boisson, Jean-Marie & Jacquet, Florence & Lherm, Michel & Veysset, Patrick, 2008. "Environmental good production in the optimum activities portfolio of a risk averse-farmer," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 86(1).
    17. Bamière, Laure & Havlík, Petr & Jacquet, Florence & Lherm, Michel & Millet, Guy & Bretagnolle, Vincent, 2011. "Farming system modelling for agri-environmental policy design: The case of a spatially non-aggregated allocation of conservation measures," Ecological Economics, Elsevier, vol. 70(5), pages 891-899, March.
    18. Ricome, Aymeric & Chaib, Karim & Ridier, Aude & Kephaliacos, Charilaos & Carpy-Goulard, Francoise, 2016. "The Role of Marketing Contracts in the Adoption of Low-Input Production Practices in the Presence of Income Supports: An Application in Southwestern France," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 41(3), pages 1-29.
    19. Bontemps, Christophe & Bougherara, Douadia & Nauges, Céline, 2020. "Do Risk Preferences Really Matter? The Case of Pesticide Use in Agriculture," TSE Working Papers 20-1095, Toulouse School of Economics (TSE).
    20. Bougherara, Douadia & Nauges, Céline, 2018. "How laboratory experiments could help disentangle the influences of production risk and risk preferences on input decisions," TSE Working Papers 18-903, Toulouse School of Economics (TSE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:107:y:2021:i:c:s026483772100185x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.