IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v85y2020ics0966692320300090.html
   My bibliography  Save this article

Potential for reducing carbon emissions from urban traffic based on the carbon emission satisfaction: Case study in Shanghai

Author

Listed:
  • Zhang, Linling
  • Long, Ruyin
  • Li, Wenbo
  • Wei, Jia

Abstract

The transport sector has attracted much attention as one of the main sources of carbon emissions. In this study, we constructed an optimal urban traffic structure model based on the concept of carbon emission satisfaction in order to estimate the absolute carbon emission reductions that can be achieved, and to objectively analyze the relative difficulty of achieving the emissions reduction goal. By considering Shanghai as an example, we found that rail transit is the dominant mode of transportation and that the proportion of travel in private cars can be greatly reduced, but buses should be maintained at the current level, whereas the proportion of taxis may be reduced slightly. In the existing traffic environment in Shanghai, after optimizing the urban traffic structure, we found that 47.62% of the carbon emissions reduction target can be achieved. However, given the excessive attention paid to the satisfaction of individuals and the government but the lack of consideration of the ecological environment, the carbon emission satisfaction with respect to urban traffic is low at present in Shanghai. Improving the carbon emission satisfaction by reducing the satisfaction of other targets is difficult, and the potential for reducing carbon emissions is limited for transportation. Therefore, Shanghai can only achieve its carbon emission reduction targets by implementing resource allocation, transportation technology, and urban planning measures in order to improve the existing traffic conditions, thereby achieving the goal of reducing carbon emissions but without affecting the satisfaction of other targets.

Suggested Citation

  • Zhang, Linling & Long, Ruyin & Li, Wenbo & Wei, Jia, 2020. "Potential for reducing carbon emissions from urban traffic based on the carbon emission satisfaction: Case study in Shanghai," Journal of Transport Geography, Elsevier, vol. 85(C).
  • Handle: RePEc:eee:jotrge:v:85:y:2020:i:c:s0966692320300090
    DOI: 10.1016/j.jtrangeo.2020.102733
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692320300090
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2020.102733?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nakamura, Kazuki & Hayashi, Yoshitsugu, 2013. "Strategies and instruments for low-carbon urban transport: An international review on trends and effects," Transport Policy, Elsevier, vol. 29(C), pages 264-274.
    2. Hao, Han & Geng, Yong & Wang, Hewu & Ouyang, Minggao, 2014. "Regional disparity of urban passenger transport associated GHG (greenhouse gas) emissions in China: A review," Energy, Elsevier, vol. 68(C), pages 783-793.
    3. Zhang, Chuanguo & Nian, Jiang, 2013. "Panel estimation for transport sector CO2 emissions and its affecting factors: A regional analysis in China," Energy Policy, Elsevier, vol. 63(C), pages 918-926.
    4. Yang, Yuan & Wang, Can & Liu, Wenling & Zhou, Peng, 2017. "Microsimulation of low carbon urban transport policies in Beijing," Energy Policy, Elsevier, vol. 107(C), pages 561-572.
    5. Hickman, Robin & Ashiru, Olu & Banister, David, 2010. "Transport and climate change: Simulating the options for carbon reduction in London," Transport Policy, Elsevier, vol. 17(2), pages 110-125, March.
    6. Zhang, Linling & Long, Ruyin & Chen, Hong, 2019. "Do car restriction policies effectively promote the development of public transport?," World Development, Elsevier, vol. 119(C), pages 100-110.
    7. Geng, Jichao & Long, Ruyin & Chen, Hong, 2016. "Impact of information intervention on travel mode choice of urban residents with different goal frames: A controlled trial in Xuzhou, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 134-147.
    8. Wang, W.W. & Zhang, M. & Zhou, M., 2011. "Using LMDI method to analyze transport sector CO2 emissions in China," Energy, Elsevier, vol. 36(10), pages 5909-5915.
    9. Jingni Song & Feng Chen & Qunqi Wu & Weiyu Liu & Feiyang Xue & Kai Du, 2019. "Optimization of Passenger Transportation Corridor Mode Supply Structure in Regional Comprehensive Transport Considering Economic Equilibrium," Sustainability, MDPI, vol. 11(4), pages 1-18, February.
    10. Mifsud, Deborah & Attard, Maria & Ison, Stephen, 2017. "To drive or to use the bus? An exploratory study of older people in Malta," Journal of Transport Geography, Elsevier, vol. 64(C), pages 23-32.
    11. Nandi, A.K. & Bhattacharya, K. & Manna, S.S., 2009. "An optimal network for passenger traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3651-3656.
    12. Wang, Hongxia & Fang, Hong & Yu, Xueying & Wang, Ke, 2015. "Development of natural gas vehicles in China: An assessment of enabling factors and barriers," Energy Policy, Elsevier, vol. 85(C), pages 80-93.
    13. Subash Dhar & Charles Marpaung, 2015. "Technology priorities for transport in Asia: assessment of economy-wide CO 2 emissions reduction for Lebanon," Climatic Change, Springer, vol. 131(3), pages 451-464, August.
    14. Song, Malin & Peng, Jun & Wang, Jianlin & Zhao, Jiajia, 2018. "Environmental efficiency and economic growth of China: A Ray slack-based model analysis," European Journal of Operational Research, Elsevier, vol. 269(1), pages 51-63.
    15. Marsden, Greg & Groer, Stefan, 2016. "Do institutional structures matter? A comparative analysis of urban carbon management policies in the UK and Germany," Journal of Transport Geography, Elsevier, vol. 51(C), pages 170-179.
    16. Ajanovic, Amela & Haas, Reinhard, 2017. "The impact of energy policies in scenarios on GHG emission reduction in passenger car mobility in the EU-15," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1088-1096.
    17. Li, Yaping & Guo, Yuntao & Lu, Jian & Peeta, Srinivas, 2019. "Impacts of congestion pricing and reward strategies on automobile travelers’ morning commute mode shift decisions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 72-88.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Xi-Yin & Xu, Zhicheng & Zheng, Jialin & Zhou, Ya & Lei, Kun & Fu, Jiafeng & Khu, Soon-Thiam & Yang, Junfeng, 2023. "Internal spillover effect of carbon emission between transportation sectors and electricity generation sectors," Renewable Energy, Elsevier, vol. 208(C), pages 356-366.
    2. Yunlong Liu & Leiyu Chen & Chengfeng Huang, 2022. "A Tripartite Evolutionary Game and Simulation Analysis of Transportation Carbon Emission Reduction across Regions under Government Reward and Punishment Mechanism," Sustainability, MDPI, vol. 14(17), pages 1-19, August.
    3. Wenhui Zhang & Hao Chen & Hongzhuo Zhou & Changhang Wu & Ziwen Song, 2023. "Exploring the Characteristics of Green Travel and the Satisfaction It Provides in Cities Located in Cold Regions of China: An Empirical Study in Heilongjiang Province," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    4. Wenhui Zhang & Yajing Song & Ge Zhou & Ziwen Song & Cong Xi, 2023. "Multiobjective-Based Decision-Making for the Optimization of an Urban Passenger Traffic System Structure," Sustainability, MDPI, vol. 15(18), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jialin Liu & Yi Zhu & Qun Zhang & Fangyan Cheng & Xi Hu & Xinhong Cui & Lang Zhang & Zhenglin Sun, 2020. "Transportation Carbon Emissions from a Perspective of Sustainable Development in Major Cities of Yangtze River Delta, China," Sustainability, MDPI, vol. 13(1), pages 1-18, December.
    2. Zong, Fang & Li, Yu-Xuan & Zeng, Meng, 2023. "Developing a carbon emission charging scheme considering mobility as a service," Energy, Elsevier, vol. 267(C).
    3. Focas, Caralampo, 2016. "Travel behaviour and CO2 emissions in urban and exurban London and New York," Transport Policy, Elsevier, vol. 46(C), pages 82-91.
    4. Xiaoshu Cao & Shishu OuYang & Dan Liu & Wenyue Yang, 2019. "Spatiotemporal Patterns and Decomposition Analysis of CO 2 Emissions from Transportation in the Pearl River Delta," Energies, MDPI, vol. 12(11), pages 1-17, June.
    5. Linna Li, 2019. "Structure and influencing factors of CO2 emissions from transport sector in three major metropolitan regions of China: estimation and decomposition," Transportation, Springer, vol. 46(4), pages 1245-1269, August.
    6. Hao, Han & Liu, Zongwei & Zhao, Fuquan & Li, Weiqi, 2016. "Natural gas as vehicle fuel in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 521-533.
    7. Liu, Jiaguo & Li, Sujuan & Ji, Qiang, 2021. "Regional differences and driving factors analysis of carbon emission intensity from transport sector in China," Energy, Elsevier, vol. 224(C).
    8. Eliasson, Jonas & Proost, Stef, 2015. "Is sustainable transport policy sustainable?," Transport Policy, Elsevier, vol. 37(C), pages 92-100.
    9. Guo, Bin & Geng, Yong & Franke, Bernd & Hao, Han & Liu, Yaxuan & Chiu, Anthony, 2014. "Uncovering China’s transport CO2 emission patterns at the regional level," Energy Policy, Elsevier, vol. 74(C), pages 134-146.
    10. Luo, Xiao & Dong, Liang & Dou, Yi & Liang, Hanwei & Ren, Jingzheng & Fang, Kai, 2016. "Regional disparity analysis of Chinese freight transport CO2 emissions from 1990 to 2007: Driving forces and policy challenges," Journal of Transport Geography, Elsevier, vol. 56(C), pages 1-14.
    11. Jiefang Dong & Chun Deng & Rongrong Li & Jieyu Huang, 2016. "Moving Low-Carbon Transportation in Xinjiang: Evidence from STIRPAT and Rigid Regression Models," Sustainability, MDPI, vol. 9(1), pages 1-15, December.
    12. Zawieska, Jakub & Pieriegud, Jana, 2018. "Smart city as a tool for sustainable mobility and transport decarbonisation," Transport Policy, Elsevier, vol. 63(C), pages 39-50.
    13. Huang, Fei & Zhou, Dequn & Wang, Qunwei & Hang, Ye, 2019. "Decomposition and attribution analysis of the transport sector’s carbon dioxide intensity change in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 343-358.
    14. Cheng, Yung-Hsiang & Chang, Yu-Hern & Lu, I.J., 2015. "Urban transportation energy and carbon dioxide emission reduction strategies," Applied Energy, Elsevier, vol. 157(C), pages 953-973.
    15. Tianxiang Lv & Xu Wu, 2019. "Using Panel Data to Evaluate the Factors Affecting Transport Energy Consumption in China’s Three Regions," IJERPH, MDPI, vol. 16(4), pages 1-14, February.
    16. Andrés, Lidia & Padilla, Emilio, 2018. "Driving factors of GHG emissions in the EU transport activity," Transport Policy, Elsevier, vol. 61(C), pages 60-74.
    17. Lilis Yuaningsih & R. Adjeng Mariana Febrianti & Munawar Javed Ahmad, 2021. "Examining the Factors Affecting CO2 Emissions from Road Transportation in Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 152-159.
    18. Luo, Xiao & Dong, Liang & Dou, Yi & Li, Yan & Liu, Kai & Ren, Jingzheng & Liang, Hanwei & Mai, Xianmin, 2017. "Factor decomposition analysis and causal mechanism investigation on urban transport CO2 emissions: Comparative study on Shanghai and Tokyo," Energy Policy, Elsevier, vol. 107(C), pages 658-668.
    19. Li, Fangyi & Cai, Bofeng & Ye, Zhaoyang & Wang, Zheng & Zhang, Wei & Zhou, Pan & Chen, Jian, 2019. "Changing patterns and determinants of transportation carbon emissions in Chinese cities," Energy, Elsevier, vol. 174(C), pages 562-575.
    20. Li, Peilin & Zhao, Pengjun & Brand, Christian, 2018. "Future energy use and CO2 emissions of urban passenger transport in China: A travel behavior and urban form based approach," Applied Energy, Elsevier, vol. 211(C), pages 820-842.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:85:y:2020:i:c:s0966692320300090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.